Fat Pointers, SKinny Annotations:
A Heap Model for Modular C Verification

Sascha Bohme! and Michat Moskal?

1 Technische Universitit Miinchen, boehmes@in.tum.de
2 Microsoft Research, michal .moskal@microsoft.com

Abstract. Folklore has it that verification of functional properties of C programs
is intractable without making compromises on soundness of the heap model or
coverage of C features. In contrast, we present a heap model for deductive verifi-
cation that achieves (1) soundness by explicitly keeping track of runtime type as-
signment of pointers, (2) completeness and precision by accounting for changes
to that type assignment with little additional annotations, and (3) performance
by making verification conditions easy for SMT solvers in the common case of
type-safe heap accesses. Our encoding of a particular heap access operation is in-
dependent of the rest of the program, which makes the model particularly suitable
for modular verification. We have implemented this model in the VCC program
verifier making it an order of magnitude faster than the previous version.

1 Introduction

Ironically, the C programming language is often used in scenarios where reliability is of
crucial importance. Among the many tools providing means to enforce certain quality
levels, formal verification systems give the strongest guarantees about correctness of
the code under consideration. Still, the world-wide fraction of fully verified C code in
such scenarios is negligible. To improve this situation, the costs of formal verification
need to be brought down.

The VCC verification system [2]] is a step in that direction. VCC verifies that a
concurrent C program adheres to contracts in the form of pre- and post-conditions and
object invariants. These contracts are specified in the program text in a language that
extends the C expression language with first-order quantification and user-defined pred-
icates. Verifying a C program with VCC is much alike programming and compiling:
users write an initial version of the specification, run the verifier (which reports any
inconsistency of the specification with respect to the code), they then fix or add anno-
tations, and repeat. The interaction with VCC is at the level of C constructs — the user
does not need to interact with the underlying theorem prover (usually Z3 [S]). Thus,
the VCC verification cost depends on the amount of annotations and the time it takes to
develop each of them.

VCC has been applied to the kernel of Microsoft Hyper-V hypervisor, which is a
thin layer of software allowing several operating systems to share the same machine.
The Hypervisor is a small (about 100 000 lines of C) operating system, complete with
scheduler, complex page management, etc. Some more details are provided in the VCC

struct S { void foo(struct S xs) { void bar(int xp) { xp = 10; }

int f; s—>f = 10; void baz(struct S xs)

int a[5]; s—>g = 20; {

int g; _(assert s—>f == 10) bar(&s—>f); bar(&s—>g);
I8 }

Fig. 1. Accessing fields of a C struct directly and indirectly.

paper [2]. In the Hypervisor project, we found the VCC annotation overhead, for func-
tional correctness of the verified parts, to be about 2:1 (two lines of annotations per
line of code). In a comparable effort [8] to verify the L4 micro-kernel, using the in-
teractive theorem prover Isabelle/HOL [13]], annotation overhead was reportedly 20:1.
This makes the more automatic VCC approach look favorable on the annotation amount
front. However, the verification cost also depends on the annotation development time.
This clearly depends on the expertise of the user, but also critically on the performance
of verification tool as the user is likely to run multiple verification cycles for each line of
annotation. Run times of less than five seconds are desirable and up to 20 seconds still
acceptable. Our experience with the Hypervisor verification shows that longer run times
greatly decrease productivity; in particular, we have never seen a completed verification
when the response time during development would be more than one hour.

In fact, verification turnaround times (followed by fickleness of quantifier instanti-
ation heuristics and difficulty in understanding verification errors) were reported as the
main limiting factors during the Hypervisor verification. Our previous experience and
experimental data in Sect. show that the choice in modeling the heap is extremely
important for the end-to-end performance of a verification tool.

The first contribution of this paper is a novel heap model (Sect. [3) for the new ver-
sion of VCC dubbed VCC3, which is shown to outperform the earlier VCC model by
about an order of magnitude on complex benchmarks. The model covers arbitrary cast-
ing and pointer arithmetic, as well as support for unions, arrays, and memory reinterpre-
tation, with little-to-no additional annotations. We also provide a mechanized soundness
proof (Sect.[4).

Our second contribution is an experimental evaluation of heap axiomatizations for
different languages, as well as a forward-looking evaluation of further performance im-
provements of VCC (Sect. [5). To this end, we compare VCC3 with VCC2, Dafny [9],
and plain Boogie [1] axiomatizations of heap models in different configurations. We
propose a scalable, artificial benchmark, which we claim to be representative for realis-
tic modular functional verification problems.

VCC handles concurrency, but it does so entirely at a higher abstraction layer above
the heap model (through ownership, volatile data, and object invariants). Thus, this
work ignores concurrency altogether.

2 The Heap Problem and Previous Solutions

In a deductive verifier, the source program is translated to a logical formula, validity
of which is checked by a theorem prover (be it a SMT solver, an ATP system, or a

interactive proof assistant) and implies correctness of the program. By the heap model
we refer to the way heap accesses are translated. It generally requires read and write
functions. Their interplay is usually specified using some variation of the following
read-over-write axioms:

axiom (V H, p, v e read(write(H, p, v), p) = v);
axiom (V H, p, g, v e disjoint(p, q) = read(write(H, p, v), q) = read(H, q));

In the snippet above, as well as in the rest of the paper, we use syntax of the Boogie [1]]
intermediate verification language. We provide explanations in cases where Boogie syn-
tax is not self-explanatory. VCC implementation [2] translates annotated C to Boogie,
which in turn interfaces with Z3 [3]] or other provers.

Consider function foo() from Fig. [1] If the C expression &s—>f is translated to the
term x, and &s—>g is translated to y, then to prove the assertion, we will need to prove
disjoint(z, y), meaning that that pointers do not alias or otherwise overlap in memory. A
typical verification task consists of assuming a property, performing a series of updates,
and checking that the property still holds, which boils down to proving that the property
still holds for the unchanged part of the heap, and that the updates did not interfere with
each other as to violate the property. This requires proving lots of such anti-aliasing
predicates. Thus, the particular definition of disjoint() is critical to the performance of a
heap model, and in turn the verifier.

Previous VCC Solutions Over the past three years, VCC has used four different heap
models (including the one described in this paper), with progressively simpler defini-
tions of disjoint().

The very first version of VCC took a precise, machine-oriented view of memory:
the heap was modeled as a map from 64-bit values (pointers) to 8-bit values. Reading
a 32-bit integer involved performing four reads and concatenating the bytes according
to the endianness of the machine. As a consequence, deciding disjoint() of two pointers
to 32-bit values involved 16 pointer equality tests, which together with the relatively
expensive bitvector decision procedure made this model not very usable for proving
complex properties.

Consequently, we replaced bitvectors by mathematical integers for which decision
procedures are much faster. The heap was modeled as a map from pointers to integers.
We used the following “macro-definition” of disjoint():
function disjoint(p:ptr, q:ptr) : bool

{ addr(q) + sizeof(q) < addr(p) V addr(p) + sizeof(p) < addr(q) }

where the addr(p) and sizeof(p) functions yield the memory address and the statically
known size of the object pointed to by p respectively. This was much more efficient,
but we hit another obstacle: the verifier required plethora of disjoint() preconditions and
invariants, even about completely unrelated objects. While we were able to accomplish
nontrivial verification tasks, e.g., proving memory safety of the 4500 lines of assembly
code in the Hypervisor (translating the assembly code to C first), complex recursive
data structures were out of reach.

Again, we re-designed the heap model to reduce the inherent complexity. The next
heap model [3], currently used in VCC2, is based on the observation that even C pro-
grams are typically written in a type-safe way, i.e., avoiding unrestricted casting and

pointer arithmetic most of the time. This type-safety intuition is captured as a set of
valid pointers, with an invariant inv() maintained throughout the program execution,
stating that valid pointers do not overlap unless required by the type system (e.g., point-
ers to fields of a struct overlap with the struct itself, but not with each other or unre-
lated pointers). It also implies that valid pointers have unique embedding, that is a valid
pointer to a struct in which they are directly contained. Pointers are represented as pairs
(constructed with ptr()) of a value representing the type (accessed with typ()) and an
integer address (accessed with addr()). The C expression &s—>f is translated as dot2(s,
f where f is a constant of type field. For every field f of type T defined at an offset o
in a struct o, we generate:

const unique f : field;
axiom (V V:[ptr]bool, p:ptr e inv(V) A V[p] A typ(p) =0 =
dot2(p, f) = ptr(7, addr(p) + o) A
V[dot(p, f)] A emb2(V, dot2(p, f)) = p A field2(V, dot2(p, f)) = f);

We use a map from pointers to Booleans (written [ptr]bool) to represent the set of valid
pointers. The unique modifier on a constant definition ensures the defined constant is
distinct from all other unique constants.

In this model, the predicate disjoint(p, q) is defined to be just p # q, which is usu-
ally proven based on the uniqueness of embedding utilized by the emb2() and field2()
functions axiomatized above. Given two valid pointers p and q, &p—>a and &q—>b
are known to be disjoint if p and q are known to be different (by emb2() above), or if a
and b are known to be different (by field2() above). This gives a type-safe view on valid
pointers: fields of different valid objects never overlap.

The C cast expression (7)p is translated to ptr(7, addr(p)), while pointer arithmetic
p + k is translated to ptr(typ(p), addr(p)+ sizeof(typ(p))* k). Note that &s—>g and
(intx)s + 6 evaluate to the same type/address pair — pointer arithmetic works as ex-
pected. Together with the ability to update the set of valid pointers (reinterpret memory
as different types at different times), this made the VCC2 model adequate for the Hy-
pervisor verification. Compared to the previous heap model, the annotation overhead
drastically decreased, and the verification times were much faster, but still unsatisfac-
tory on complex data structure benchmarks.

Related work The field of C verifiers focusing on both full functional correctness and
a high level of automation is not very crowded.

On the functional verification side the most closely related heap model is Tuch’s [[14]]
used in L4 verified project [8]. It maintains a low-level byte heap, a word-level heap,
and separate heaps for struct types, all kept in sync. The user can choose the appropriate
heap (and thus required level of precision) for each memory access. This seems useful
in interactive setting, but rather difficult to automate.

On the automation side, a good representative is the heap model used in the HAVOC
static checker [4]], which uses a notion of valid pointers similar to ours. HAVOC makes
the valid pointer set immutable for efficiency reasons, which leads to compromises in
either soundness or precision in modelling of memory allocation. This is an excellent

? The new model (Sect. also defines a dot() function, so to avoid confusion we call the VCC2
one dot2(). Similarly for emb() and field().

choice for efficient bug finding, but for sound verification of systems code the changes
to type state need to be modelled precisely. This is why our model migrates type infor-
mation into pointers themselves. This permits efficient, sound, and precise reasoning, at
the expense of additional annotations for casting, unions, and pointer arithmetic. Similar
heap model, aided by a static whole-program analysis is employed in Frama-C [L1]].

Heap models in verification tools using non-classical logics (e.g., separation logic
or dynamic logic) are not directly comparable, as most of the aliasing analysis is per-
formed outside the reasoning engine. In that area, tools closest to VCC in scope are
KeY-C [12]] and Verifast [[7]].

3 Fat Pointers

In the VCC2 heap model, the theorem prover needs to take into account changes to the
set of valid pointers to reason about aliasing. In contrast, in fully type-safe models (e.g.,
in Dafny [9]) fields of different objects never alias, regardless of pointer validity. We
have observed that Dafny (using the same Boogie and Z3 pipeline) indeed performs
much better than VCC2 on our complex data structure benchmarks. We thus decided to
include identity of fields in pointer representation. Such “fat” pointers to different fields
are never considered equal. Clearly, the C execution model does not account for that,
but the fact that one can only access valid pointers comes to rescue — Sect. [4 has a
bisimulation proof between the C execution model and our fat pointer model. The dot()
function combines a pointer and a field into a pair, which can be deconstructed using
emb() and field()[]

type ptr, field;

function dot(p:ptr, f:field) : ptr, field(p:ptr) : field, emb(p:ptr) : ptr;

axiom (V p:ptr, f:field @ emb(dot(p, f)) = p A field(dot(p, f)) = f);

axiom (V p:ptr e dot(emb(p), field(p)) = p);

For a top-level pointer p, not embedded in any other struct, we define emb(p)= p. Like in
the VCC2 model, we will need a runtime representation of C types. The typ() function
is now defined in terms of field_type().

type typ;
function field_type(f:field) : typ, sizeof(t:typ) : int;
const unique t_short, t_int, t_unsigned_int, ... : typ;

axiom (V t:typ e sizeof(t) > 0) A sizeof(t_short) = 2 A sizeof(t.int) =4 A ... ;
function typ(p:ptr) : typ { field_type(field(p)) }

* The Boogie snippets from this point until the end of the paper form a program, which has
been verified. The axioms from Sect. 2] are conceptually related but do not form a part of this
program. The theorems are proven as assertions inside procedures. Boogie is thus, somewhat
unusually, used for a meta-proof. We generally introduce one “defining” axiom per function,
but we have not mechanized the proof of their consistency. The full Boogie file (including
necessary quantifier instantiation hints) is available at http://research.microsoft.com/
~moskal/vcc3memory . aspx.

http://research.microsoft.com/~moskal/vcc3memory.aspx
http://research.microsoft.com/~moskal/vcc3memory.aspx

The representation of the heap is a map from fat pointers to integerﬂ As in VCC2,
we also maintain a set of valid pointers, for which the type-safe heap map agrees with
the physical byte-array memory. For each memory read or write, we check that the
pointer accessed is valid, and thus if none of these checks fails, the execution of an
abstracted program is equivalent to the execution of the corresponding real program
(this is formalized in Sect. {). Both the heap and valid pointers are stored in Boogie
global variables.

type heap = [ptr]int, ptrset = [ptr|bool;

var H:heap, V:ptrset;

function select(H:heap, p:ptr) : int { H[p] }

function store(H:heap, p:ptr, viint) : heap { H[p :=v] }

The heap type can be also defined as, e.g., [ptr][field]int. The select(H, p) would then be
Hlemb(p)][field(p)], so select(H, dot(p, f)) can be optimized to H[p][f]. While these mod-
els are mathematically equivalent, they have very different performance characteristics
(Sect. [5.1). The C program from Fig. [I] is translated into the following declarations
(def_field() is explained below)ﬁ

const unique f, a, g : field;

axiom def_field(f, t_int, 0) A def_field(a, t_int, 4) A def_field(g, t-int, 24);

procedure foo(s:ptr) { assert V[dot(s, f)]; H := store(H, dot(s, f), 10);
assert V[dot(s, g)]; H := store(H, dot(s, g), 20);
assert select(H, dot(s, f)) = 10; }

procedure bar(p:ptr) { assert V[p]; H := store(H, p, 10); }

procedure baz(s:ptr) { call bar(dot(s, f)); call bar(dot(s, g)); }

3.1 Arrays and Pointer Arithmetic

Arrays embedded in structs are handled using a field constructed using function idx(),
e.g., memory access s—>a[3] is translated to select(H, dot(s, idx(a, 3))).

function idx_of(f:field) : int, field_of(f:field) : field, offset(f:field) : int;
function idx(f:field, i:int) : field;
function def _field(f:field, t:typ, o:int) : bool
{ field_of(f) = f A idx_of(f) = 0 A field_type(f) =t A offset(f) = o }
axiom (V f:field, i:int e field_of(idx(f, i)) = field_of(f) A
idx_of(idx(f, 1)) =i + idx_of(f) A field_type(idx(f, i)) = field_type(f) A
offset(idx(f, i)) = offset(f) + sizeof(field_type(f)) = i);

The function idx() is a type-safe approximation of pointer arithmetic. Because the veri-
fier knows idx_of(idx(a, 2))# idx_of(idx(a, 3)), it concludes that &s—>a[2] and &s—>a[3]
do not alias. Because field_of(idx(a, 0))= a and field_of(f)= f, it can conclude that also
&s—>a[0] and &s—>f do alias.

What about &s—>g and &s—>a[5]? From the verifier point of view they are different
pointers, however the C pointer comparison will see them as equal. Generally, &s—>al[5]

> Boogie type int refers to unbounded integers, but the VCC implementation takes care also of
bounded integers and overflows.

® To verify the program, one needs preconditions about validity of pointers. In VCC, validity is
implied by ownership, but ownership itself needs to be specified explicitly.

will be invalid, and thus impossible to read or write. The C pointer comparison operation
p == q is translated to addr(p)= addr(q), where the function addr() is axiomatized as
follows:

function addr(p:ptr) : int;
axiom (V p:ptr, f:field e addr(dot(p, f)) = addr(p) + offset(f));

The idx() function is also used for arbitrary pointer arithmetic, e.g., p + 7 is translated
to dot(emb(p), idx(field(p), 7)). The addr() interpretation above and the computation of
offset(idx(...)) ensure that addr() agrees with the actual addresses computed by the C
program.

What if the user expects s—>a[5] to access s—>g? In VCC the user would need to
supply an annotation: *(,(retype)&s—>a[5])ﬂEvery annotation _(retype)p is translated
as retype(V, p), which will “guess” the proper way to access the value of type typ(p)
at addr(p). Specifically, the verifier is going to maintain the following type uniqueness
property of the set of valid pointers:

function unique_ta(V:ptrset) : bool
{ (v p. g:ptr @ V[p] A V[q] A addr(p) = addr(q) A typ(p) = typ(a) = p =) }

For such type-unique valid pointer sets, we can postulate the existence of the retype()
function, such that:
function retype(V:ptrset, p:ptr) : ptr;
axiom (V V:ptrset, p:ptr e unique_ta(V) =
(addr(retype(V, p)) = addr(p) A typ(retype(V, p)) = typ(p)) A
(VIp] = retype(V, p) = p));

That is, retype() is a function that yields a pointer with the same type and address as the
input pointer, and if there exists a valid pointer at that type and address, it yields this
very pointer (which by unique_ta() is unique).

The predicate unique_ta() states that valid pointers of the same type that have the

same address (e.g., because they compare equal using the C == operator) are indeed
equal. For example, provided p and q are valid pointers of the same type, the following
snippet will verify: if (p == q){ -(assert xp == xq)}.

Arrays not embedded in structures are treated as instances of a synthetic type, sim-
ilar to the one defined in C++-like syntax below:

template <typename T, size_t n> struct Array<T,n> { T data[n]; };

The C cast expression (7)p is translated to cast(7, p), axiomatized as:
function cast(t:typ, p:ptr) : ptr;
axiom (V t,s:typ, p:ptr e typ(cast(t, p)) =t A addr(cast(t, p)) = addr(p) A
cast(typ(p), p) = p A cast(t, cast(s, p)) = cast(t, p));

We may also axiomatize cast(t, p) to return dot(p, f) when field_type(f)=t A offset(f)=
0, and similarly for emb(), so when cast() is applied to a valid pointer, it will yield a valid
pointer in common cases. Otherwise, the user will be required to supply the _(retype)
annotation.

7 All VCC annotations are enclosed in _(...), which permits hiding them from the regular C
compiler.

Generally, retype() should not be used too extensively (e.g., in the default translation
of cast), as it may degrade the verification experience (e.g., (intx)p yielding different
values in different states is counterintuitive), as well as performance (by mixing the
heap into previously stateless operations). Fortunately, it is not required for type-safe
field and array accesses, nor for simple casting.

4 Formalization

This section justifies soundness of approximation of the C memory with a map from fat
pointers to integers. We first define a low-level model mandated by the C standard [6],
then define the coupling invariant inv() between the low-level memory, and the high-
level heap and the set of valid pointers. The set of valid pointers can be changed using
explicit memory reinterpretation. We have previously shown that by using enough rein-
terpretation, a similar heap model is also complete [3]].

The inv() predicate, and all predicates in its definition, are only used for the meta-
proofs below. We prove once and for all that writing at valid pointers and reinterpreta-
tion preserve inv(), so there is no need to assert or assume inv() explicitly in translations
of C programs (cf. the HAVOC model [4])). It is used implicitly to justify using high-
level heap for reading and writing, and the existence of the retype() function.

4.1 The Coupling Invariant

The C standard views the heap as a set of disjoint chunks of memory, within which
pointer arithmetic is possible. The memory read operation conceptually reads a se-
quence of bytes stored at a particular address (which is just an integer), and combines
them depending on endianess of the machine and the type read. Similarly, the write
operation will update a sequence of bytes.

type mem;
function read(M:mem, t:typ, a:int) : int;
function write(M:mem, t:typ, a:int, viint) : mem;

The C standard mandates that reading a value from previously written location yields
the written value, and that writes through non-overlapping pointers commute. To define
overlapping, we use a function support(t, a) yielding the set of memory addresses oc-
cupied by pointer a of type t. The predicate scalar(t) holds iff t is a scalar type (i.e., an
arithmetic type or a pointer, but not a struct or union type). read() and write() are used
only for scalar pointers. Because we are using Boogie maps to represent sets, Boogie
lambda-expressions can be used as set comprehensions.

type addrset = [int]bool;

function scalar(t:typ) : bool;

function support(t:typ, a:int) : addrset { (A g:int e a < q A q < a + sizeof(t)) }

axiom (V M:mem, t:typ, a:int, v:int e read(write(M, t, a, v), t, a) = v);

axiom (V M:mem, t1, t2:typ, al, a2:int, v:int e support(tl, al) N support(t2, a2) =0
= read(write(M, t1, al, v), t2, a2) = read(M, t2, a2));

We are going to maintain a coupling invariant inv(M, H, V) between the low-level
memory M, the heap H, and the set of valid pointers V. The invariant states that supports
of scalar valid pointers are disjoint, and the values stored in M and H at scalar valid
pointers agree. It also includes the predicates unique_ta() and anchored(), which will be
important for the proof in the next section but are irrelevant here (ordinary writes do not
depend on them, nor do they update the valid pointer set).

function supp(p:ptr) : addrset { support(typ(p), addr(p)) }
function scalar_only(P:ptrset) : ptrset { (A p:ptr @ P[p] A scalar(typ(p))) }
function disjoint_supps(P:ptrset) : bool { (V p, q:ptr
scalar_only(P)[p] A scalar_only(P)[a] = p # g = supp(p) N supp(a) = 0)) }
function inv(M:mem, H:heap, V:ptrset) : bool {
(V p:ptr e V[p] A scalar(typ(p)) = select(H, p) = read(M, typ(p), addr(p))) A
disjoint_supps(V) A anchored(V) A unique_ta(V) }

Theorem 1. Storing values at valid scalar pointers in the low-level memory and the
abstract heap maintains the coupling invariant.

(V M:mem, H:heap, V:ptrset, p:ptr, viint @ V[p] A scalar(typ(p)) =
inv(M, H, V) = inv(write(M, typ(p), addr(p), v), store(H, p, v), V))

Proof. Automatic in Boogie. a

By the coupling invariant and the theorem above, both reads and writes at valid
pointers can be performed on the high-level heap, and the low-level memory can be dis-
carded for verification. If all heap accesses are performed at valid pointers, the programs
accessing low and high-level heaps are bisimilar. This justifies the foo/bar translation
in previous section.

4.2 Reinterpretation

Sometimes programs change the type assignment, changing the set of valid pointers and
reinterpreting the contents of the low-level memory as seen on the high level. One ex-
ample is a memory allocator, which needs to interpret chunks of memory as byte arrays
before allocation, and as some other types after allocation. Reinterpretation removes a
set of pointers from V, and adds another set, which occupies the same bytes in the low-
level memory. For locality of reasoning, the result of reinterpretation generally needs to
be considered fresh, i.e., invalid before reinterpretation. This is the usual property re-
quired from memory allocation—writing to freshly allocated memory does not violate
properties of other objects.

Allowing unrestricted reinterpretation may lead to violation of unique_ta() property,
which is crucial for pointer arithmetic (Sect. [3.1). For example, consider struct A {
struct B b; } *a. The pointer &a—>b, and all fields below, could be reinterpreted as a
byte array with sizeof(struct B) elements, leaving a itself valid. The byte array could
be then reinterpreted as an instance of struct A, because it has the proper size. The
resulting pointer will be fresh, and thus distinct from a (which was valid all along),
leading to a violation of unique_ta().

To prevent this situation, we prevent at least one member of a struct from being
reinterpreted, as long as the pointer to the struct itself stays valid. In the example above,
one could not reinterpret &a—>b without reinterpreting a in the same operation. For-
mally, a set of valid pointers is anchored iff for any valid pointer, there exists a valid
scalar pointer reachable from it via dot() operations. We express dot()-reachability us-
ing transitive closure of its inverse (emb()). embt(p, t) yields first embedding of type t
if it exists]
function embt(p:ptr, t:typ) : ptr;
function anchored(V:ptrset) : bool { (V p:ptr e V[p] =

(3 a:ptr e scalar(typ(q)) A V[a] A embt(a, typ(p)) = p A supp(a) C supp(p))) }

The supp_set(P) yields sum of supports of pointers in P. A fully-anchored set of point-
ers is one where each non-scalar pointer p has all addresses in its support covered by
disjoint scalar pointers reachable from p via dot() function. An example would be a
pointer to a struct, together with pointers to all its (transitive) members.

function supp_set(P:ptrset) : addrset { (A a:int o (3 p:ptr P[p] A supp(p)[a])) }
function fully_anchored(P:ptrset) : bool { (V p,q:ptr e P[p] A P[q] A scalar(typ(q)) =

supp(p) N supp(q) = 0 V embt(q, typ(p)) = p) A
supp_set(scalar_only(P)) = supp_set(P) A disjoint_supps(P) }

Memory reinterpretation operation takes two sets, A and B, and makes pointers in
A invalid and pointers in B valid. It requires that sum of supports of scalar pointers in A
and B are equal, and that B is fully anchored. It also requires, that pointers in A are valid,
and that (V \ A) U B is anchored. In VCC2, the analog of the last condition was ensured
by making sure that A is closed under emb2(), i.e., allowing reinterpretation only of
top-level pointers (with an exception for unions). In VCC3, we relax this condition: if
A contains p but not emb(p), then either (1) emb(p) is a union, and B contains another
member of that union, or (2) there is at least one other member of emb(p) in V \ A. After
reinterpretation, the newly valid pointers get their values from the low-level memory.

Theorem 2. Reinterpretation preserves the coupling invariant.

(VY M:mem, H,H:heap, V,V’:ptrset, A,B:ptrset o
V'=(V\A)UBA
H' = (X r:ptr o if Bfr] then read(M, typ(r), addr(r)) else select(H, r)) A
fully_anchored(B) N supp_set(scalar-only(A)) = supp_set(scalar_only(B)) A
A C V A anchored(V’) A inv(M, H, V) = inv(M, H', V'))

Proof. Automatic in Boogie. a

The low-level memory is unavailable in verification, so the heap reinterpretation needs
to be either conservatively approximated (by giving newly valid pointers unspecified
values), or specified precisely based on the high-level heap before reinterpretation, and
appropriate bitvector operations.

8 The precise definition is recursive, but is needed only in meta-argument not in Boogie proof.
embt(p, t) = if typ(p)=t V emb(p)= p then p else embt(emb(p), t)

10

5 Experimental Evaluation

The fat pointers model has been implemented in VCC3E]In comparison with the previ-
ous model implemented in VCC?2, it shows about an order of magnitude of speedup on
common data structures stemming from the VACID-0 benchmark suite [10]: binomial
heaps, doubly-linked lists, and red-black trees. Appendix [A] gives a detailed view of our
measurements, and Plot 1 in Fig. 2] shows the results in a graphical way (with lines in-
dicating identical run times as well as two and ten times faster run times). Note that the
VACID-0 benchmarks are geared towards modular verification of full functional cor-
rectness, which happens to be our area of interest, meaning we verify a small amount
of code (a single function) against a complex invariant.

The measurements were made for the optimal choice of heap representation, as
described in Sect.[5.1] In all experiments, the back-end prover Z3 [3] (version 2.10) was
limited to a run time of 60 seconds and used with the default set of options supplied by
Boogie. We did not benchmark any other back-end proverm

5.1 Heap Representations

The fat pointer model permits different representations of type-safe heaps. Some of
them are easily pluggable into the VCC3 background axiomatization, but some require
significant work. We wanted to understand the impact of these choices, without having
to do a full-fledged VCC implementation. Moreover, we wanted to separate the per-
formance effects of VCC background axiomatization of orthogonal C features (e.g.,
modular arithmetic).

In fact, even before implementing the VCC3 model, we had encoded an abstraction
of the VCC2 model directly in Boogie and compared that against different variations
of type-safe heaps. We have evaluated these models on a simple artificial benchmark
writing n fields in m objects, and then asserting that the value read is the value written
beforehand. The abstraction of VCC2 was orders of magnitude slower than simple type-
safe heaps, which gave us strong motivation to develop the fat pointers model. We also
observed large differences between different type-safe heap representations.

After implementing the VCC3 prototype, we have plugged some of the type-safe
representations and evaluated them on VACID-0 benchmarks. While all VCC3 varia-
tions were still dramatically faster than VCC2, the differences between different type-
safe heaps were much smaller than in plain Boogie, on the simple read-write bench-
mark. Also the relative order of these representations was different. We thus devel-
oped an artificial benchmark, based on the linked-list data structure, which “simulates”
VACID-0 benchmarks (i.e., gives similar results in terms of relative order), but is scal-
able, simple, and amplifies the effects of heap encoding choices.

® VCC is available in source for academic use at http://vcc.codeplex.com/,

19 The other SMT solvers with quantifier support (notably CVC3, Fx7, and Yicesl) are at least
two orders of magnitude slower and, except for CVC3, no longer under development (cf. the
results of annual SMT competition, in the relevant AUFLIA and UFNIA divisions, http:
//www.smtcomp.org/2010/). ATP systems typically do not support arithmetic, required by
VCC background axiomatization.

11

http://vcc.codeplex.com/
http://www.smtcomp.org/2010/
http://www.smtcomp.org/2010/

VCC3

10s

60s

50s

30s

20s

10s

0Os

30s

20s

15s

10s

5s

0Os

LB s s s R
Plot 1. VCC2 vs. VCC3 E

7‘ Plot 2. VCC (different representations)

Fig. 2. Results of experimental evaluation using a 2.7GHz Intel machine.

12

F 60s
i] vees
L 1 508 1 H(dot(p.f)]
g 1 -== Hp][f]
[1 — Hipf]
L 1 40s |- —— H[f][p]
F 1 s0s|
E -+ 20s |-)
[1 10s| -
Os | e
| Lol Lol Lol Lol | | | | |
s 1s 10s 100s VCC2 1 link 2 links 3 links 4 links
— T T T T T T 50s T T T T
|| Plot 3. Boogie , Plot 4. Dafny
-+ - H[dot2(p,f)] -+ - H[dot(p,f)]
H H[dot(p.f)] 4 40s HIpl[f]
|
= Hppllf - Hppf]
— Hipf] — HIf][p]
He— HIf o
[l s0sl
20s |-
- 10s -
R —— 4 osh ,_s.,-s—»/
| | | | | | | |
1 link 2 links 3 links 4 links 1 link 2 links 3 links
T T T T T T T T T T T T
- Plot 5. Axiomatization overheads 1 10s 7‘ Plot 6. Boogie (fast models) ‘
— VCC3 Hf][p] — Hifl[p]
S| Boogie Hfl[p] | HIfl[p] (arrays)
---- Boogie F[p] 8- Fp]
6s |-
4s -
| /—/\/ | 2s
i -~ U
IO Sttt a Osl e {:4’,,{ --
I I I I I I I I I I I I
1 link 2 links 3 links 4 links 1 link 2 links 3 links 4 links

The Representations In each representation, the heap is accessed at a specific pointer
and field (p,f), which can be combined using functions dot2() and dot() axiomatized
in Sect. [2] and Sect. [3| respectively, giving rise to the representations H[dot2(p,f)] and
H[dot(p,f)]. Another option is to treat the heap as a map from pointers to a map from
fields to values, yielding the representation H[p][f]. We can also reverse p and f getting
HIf][p]. These two can be implemented either using an read-over-write axiomatization
(the default choice), or using the SMT solver array theory. Yet another option is a Boo-
gie multi-dimensional map H|p,f], axiomatized similarly to single-dimensional maps:
axiom (V H, p, f, v e H[p, f := V][p, f] = v);

axiom (V H, pl1, p2, f1, f2, v e p1 # p2 V f1 # f2 = H[pl, f1 := v][p2, f2] = H[p2, f2]);

Finally, one can use a separate heap for each field, F[p].

The Benchmark The objective of the benchmark is to verify that a list insertion function
maintains the list invariant. The function operates on a designated list manager object,
pointing to 2n list nodes (n heads and n tails). Each list node has n next pointers and
n previous pointers. The manager also contains a specification field holding the set
S of nodes it controls. The invariant of manager t contains the following formula for
1 =0...n — 1 (which we give in pseudo-code using p.f to denote heap access).

(Vnen € tS = nnext; €t.S An.prev; €t.S A n.next;.prev; = n A n.prev;.next; = n)
A t.head; € t.S A t.tail; € t.S

Additionally, each list node carries m data fields, which are required by the invariant to
be positive. The x axes of the plots show the number of data fields m between 0 and
19, separately for number of links n between 1 and 4. The insertion function adds a
fresh node to t.S, updates its data fields to be positive, and then for s = 0...n — 1 it
performs a non-deterministic choice to link it at either t.head; or t.tail;, updating next
and previous pointers accordingly

Results Plots 2, 3, and 4 show run times of our benchmark in VCC, Boogie, and
Dafny[’} We omitted all timed-out data points. We see similar results in terms of or-
der, in particular the H[f][p] representation is always the fastest, and collapsing p and
f into a single entity, especially using VCC2’s dot2() function, performs very badly.
This similarity gives us some confidence that experiments with other models would
also carry over from Boogie to other verification systems. Plot 5 shows the heavy toll
taken by VCC background axiomatization compared to Boogie.

Finally, Plot 6 shows the results of experiments with representations which are not
implemented in VCC3, namely the F[p] and H[f][p] with the built-in array theory. The
F[p] representation brings about an order of magnitude speedup over HIf][p]. It is how-
ever known to be tricky to handle soundly and modularly: e.g., in function bar() from
Fig. |1] the accessed field is not know without inspecting the call sites. Additionally,
functions generally need to be allowed to write freshly allocated objects, which means

""" Full implementations in Boogie, Dafny, and VCC can be found at http: //www4.in. tum.
de/~boehmes/vcc3.html.

' We were unable to supply some of the triggering annotations for Dafny, which explains its
performance relative to VCC. Still, it shows similar trends.

13

http://www4.in.tum.de/~boehmes/vcc3.html
http://www4.in.tum.de/~boehmes/vcc3.html

they potentially write all the fields in the heap, and thus modeling function calls re-
duces benefits of F[p]. One can use different splits of the heap into field components in
different functions, and maintain some consistency invariants between them, which is
something we want to explore in future.

The array decision procedure shows speedup, but except for the biggest benchmark
it is small (within 20%). It does so by avoiding certain instantiations of read-over-write
axioms, which can lead to incompleteness when triggers are used to guide instantiations
of user-provided axioms. Thus, in context of VCC, using it is unlikely to be a good idea.

Rationale The two dot() models perform poorly because the prover needs to instantiate
some axioms to prove disjointness of heap accesses. This is particularly painful where
there is also a lot of other axioms to instantiate (i.e., in VCC or Dafny, not plain Boo-
gie), and the prover will often instantiate those other axioms first. Moreover, the dot2()
axioms are more complicated than the dot() axioms.

As for H[f][p] compared to H[p,f] or H[p][f], consider a write to x.a and subsequent
reads of y.b and z.c. To find that writing x.a did not clobber the value of y.b in HI[f][p],
the prover can establish a # b, which is usually immediate, and moreover if b = ¢ then
the value of z.c will be known without further quantifier instantiations. Note that the
opposite case of a = b is much less likely, because programs usually use more than two
fields. Similar reasoning holds for H[p][f] and x # y, however the pointer comparison
usually involves complex reasoning (e.g., x was valid at some point, whereas y was
not). Finally, in H[p,f] the prover can prove disjointness of either fields or pointers, but
there is no reuse of instantiations for different heap accesses.

Difficult benchmarks typically have many invariants quantifying over pointers. For
example, proving each of the quantified invariants in our artificial benchmark introduces
a new Skolem constant ng; and in turn ngz.prev;, ngi.next;, etc. Thus, difficult bench-
marks are likely to use many more pointers than fields, making the reuse in H[f][p] much
more significant.

6 Conclusion

We described a novel heap model for C that is at the same time sound (Sect.[4.T), precise
(Sect.[4.2)), and efficient by making the type-safe accesses simple (Sect. [3). This heap
model has been implemented for VCC3, a new version of a state-of-the-art C verifier.
Experiments with verification of data structure examples show that VCC3 outperforms
VCC2 by at least one order of magnitude, thanks to the new heap model, at the expense
of additional annotation in some corner cases.

We also tested different heap encodings in three different verification systems: Boo-
gie, Dafny, and VCC. To this end, we designed a scalable and challenging benchmark
taken from the domain of data structures. Testing it on the three systems mentioned
gave similar results in terms of tendency (i.e., indicating a clear order of encodings with
respect to performance). We have confirmed the folklore that splitting the heap by fields
performs best, but have also put concrete numbers on that claim. We believe that these
results are of general interest and carry other to further verification systems.

14

Our measurements show that there is still a significant performance gap between

VCC3 and an axiomatization of VCC3’s core heap model in Boogie. Future work will
address this issue.

References

10.

11.

12.

13.

14.

. Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M.

Leino. Boogie: A modular reusable verifier for object-oriented programs. In FMCO 2005,
volume 4111 of LNCS, pages 364-387. Springer, 2005.

. Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michat Moskal,

Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: A practical system for ver-
ifying concurrent C. In TPHOLSs 2009, volume 5674 of LNCS, pages 23—42. Springer, 2009.

. Ernie Cohen, Michat Moskal, Stephan Tobies, and Wolfram Schulte. A precise yet efficient

memory model for C. ENTCS, 254:85-103, 2009.

. Jeremy Condit, Brian Hackett, Shuvendu K. Lahiri, and Shaz Qadeer. Unifying type check-

ing and property checking for low-level code. In POPL, pages 302-314. ACM, 2009.

. Leonardo M. de Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In TACAS 2008,

volume 4963 of LNCS, pages 337-340. Springer, 2008.

. International Organization for Standardization. ISO/IEC 9899-1999: Programming

Languages—C, December 1999.

. Bart Jacobs and Frank Piessens. The VeriFast program verifier. Technical Report CW-520,

Department of Computer Science, Katholieke Universiteit Leuven, 2008.

. Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip

Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. sel.4: Formal verification of an OS kernel. In
POPL, pages 207-220. ACM, 2009.

. K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In

LPAR-16, volume 6355 of LNAI, pages 348-370. Springer, 2010.

K. Rustan M. Leino and Michat Moskal. VACID-0: Verification of Ample Correctness of
Invariants of Data-structures, Edition 0. In Proceedings of Tools and Experiments Workshop
at VSTTE, 2010.

Yannick Moy. Automatic Modular Static Safety Checking for C Programs. PhD thesis,
Université Paris-Sud, January 2009.

Oleg Miirk, Daniel Larsson, and Reiner Hdhnle. KeY-C: A tool for verification of C pro-
grams. In CADE, volume 4603 of LNCS, pages 385-390. Springer, 2007.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assis-
tant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

Harvey Tuch. Formal verification of C systems code: Structured types, separation logic
and theorem proving. Journal of Automated Reasoning: Special Issue on Operating System
Verification, 42(2—4):125-187, Apr 2009.

15

A Detailed Comparison of VCC2 and VCC3

Testcase vCC2 VCC3 Ratio
Heap.c: Heap_adm 0.14 +0.01] 0.10 £0.00{ 1.3x
Heap.c: extractMin 15.55 £4.40| 7.95 £1.63| 2.0x
Heap.c: heapSort 7.11 +3.84| 0.27 +£0.01{26.4%
Heap.c: heapSortTestHarness 1.03 +£0.11] 0.14 £0.00| 7.6x
Heap.c: init 0.14 40.00{ 0.10 £0.00| 1.4x
List.c: InitializeListHead 0.20 +£0.01] 0.14 £0.00| 1.5x
List.c: InsertHeadList 8.12 +0.64| 1.02 £0.05| 8.0x
List.c: InsertTailList 8.45 +£0.69| 0.95 £0.07| 8.9x%
List.c: IsListEmpty 0.10 £0.00| 0.07 £0.00| 1.4x
List.c: RemoveEntryList 4.64 =£0.23| 0.53 £0.03| 8.8x
List.c: RemoveHeadList 4.75 £0.12| 0.49 £0.03| 9.6x
List.c: RemoveTailList 4.12 +£0.12] 0.52 £0.07| 8.0%

List.c: _LIST_.MANAGER_adm| 0.22 40.01| 0.15 +0.01| 1.5%
RedBlackTrees.c: Tree_adm 0.59 =+£0.01| 0.40 £0.01| 1.5x
RedBlackTrees.c: left_rotate [108.40 +22.74|12.90 +4.43| 8.4x
RedBlackTrees.c: right_rotate | 97.06 £14.07| 13.44 £0.77| 7.2x
RedBlackTrees.c: tree_find 0.14 =+£0.00| 0.13 £0.01| 1.0x
RedBlackTrees.c: tree_init 0.13 +£0.00] 0.11 £0.00| 1.2x
RedBlackTrees.c: tree_insert 94.17 49.53| 3.14 £0.24|30.0x
RedBlackTrees.c: tree_lookup 0.12 +£0.00] 0.08 £0.00| 1.5x

Table 1. Detailed comparison of VCC2 and VCC3. Times are median for 6 runs with different
random seeds, given in seconds. & refers to variance of results when using different random
seeds.

16

	Fat Pointers, Skinny Annotations: A Heap Model for Modular C Verification
	Introduction
	The Heap Problem and Previous Solutions
	Previous VCC Solutions
	Related work

	Fat Pointers
	Arrays and Pointer Arithmetic

	Formalization
	The Coupling Invariant
	Reinterpretation

	Experimental Evaluation
	Heap Representations
	The Representations
	The Benchmark
	Results
	Rationale

	Conclusion
	Detailed Comparison of VCC2 and VCC3

