
Rocket-Fast Proof Checking for SMT Solvers

Micha�l Moskal

University of Wroc�law, Poland

Abstract. Modern Satisfiability Modulo Theories (SMT) solvers are
used in a wide variety of software and hardware verification applica-
tions. Proof producing SMT solvers are very desirable as they increase
confidence in the solver and ease debugging/profiling, while allowing for
scenarios like Proof-Carrying Code (PCC). However, the size of typical
proofs generated by SMT solvers poses a problem for the existing sys-
tems, up to the point where proof checking consumes orders of magnitude
more computer resources than proof generation. In this paper we show
how this problem can be addressed using a simple term rewriting for-
malism, which is used to encode proofs in a natural deduction style. We
formally prove soundness of our rules and evaluate an implementation
of the term rewriting engine on a set of proofs generated from industrial
benchmarks. The modest memory and CPU time requirements of the
implementation allow for proof checking even on a small PDA device,
paving a way for PCC on such devices.

1 Introduction

Satisfiability Modulo Theories (SMT) [14] solvers check satisfiability of a first
order formula, where certain function and constant symbols are interpreted ac-
cording to a set of background theories. These theories typically include integer
or rational arithmetic, bit vectors and arrays. Some SMT solvers support only
quantifier free fragments of their logics, other also support quantifiers, most of-
ten through instantiation techniques. SMT solvers are often based on search
strategies of SAT solvers.

The usage of background theories, instantiation techniques and efficient han-
dling of the Boolean structure of the formula differentiates SMT solvers from
first-order theorem provers based on resolution. SMT solvers are efficient for
larger mostly ground formulas. This makes them good tools for hardware and
software verification.

SMT solvers typically either answer that the input formula is unsatisfiable, or
give some description of a model, in which the formula might be satisfiable. In
terms of software verification the first answer means that the program is correct,
while the second answer means, that an assertion might be violated. The model
description is used to identify a specific assertion and/or execution trace.

What is troubling is that we are trusting the SMT solver, when it says the
program is correct. One problem is that there might be a bug in the SMT solver,
whose implementation can be largely opaque to others than the developer.

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 486–500, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Rocket-Fast Proof Checking for SMT Solvers 487

The other problem is that we might want to provide the evidence of program
being correct to someone else, like in Proof-Caring Code [13] scenarios.

It is therefore desirable for an SMT solver to produce the proof of the unsatis-
fiability of formulas. The problem is that in program verification, the queries are
rather huge and so are the proofs. For example formulas in the AUFLIA division
of the SMT problem library1 contain up to 130 000 distinct subterms, with an
average of 8 000. The proofs we have generated are on average five times bigger
than the formulas. The most complicated proof we have encountered contains
around 40 000 basic resolution steps and around 1 000 000 (sub)terms in size.
What is worth noting however, is that state of the art SMT solvers are able to
check a vast majority of such queries in under a second. As the general expec-
tation is that proof checking should be faster than proof generation, it becomes
clear that we need very efficient means of proof checking.

1.1 Contributions

The contributions of this paper are:

– we introduce a simple, yet expressive term rewrite formalism (Sect. 2), and
show it is strong enough to encode and check proofs of theory and Boolean
tautologies (Sect. 3), and also NNF/CNF conversions with skolemization
(Sect. 4),

– we discuss two highly efficient implementations of the proposed rewrite sys-
tem (Sect. 6). In particular we discuss performance issues (Sect. 6.2) and we
describe techniques to help ensure soundness of the rewrite rules (Sect. 6.1).

There are two reasons to use term rewriting as a proof checking vehicle. One
is that the term rewriting is a simple formalism, therefore it is relatively easy
to reason about the correctness of an implementation of the proof checker. The
bulk of soundness reasoning goes at term rewrite rules level, which is much better
understood and simpler to reason about than a general purpose (often low level)
programming language used to implement a proof checker.

The second reason is memory efficiency, which on modern CPUs is also a key
to time efficiency. We encode proof rules as rewrite rules and handle non-local
conditions (like uniqueness of Skolem functions) at the meta level, which allows
for the rewrite rules to be local. The idea behind the encoding of the proof rules
is to take proof terms and rewrite them into the formulas that they prove. This
allows for memory held by the proof terms to be immediately reclaimed and
reused for the next fragment of the proof tree read from a proof file.

1.2 Proof Search in SMT Solvers

This section gives description of a proof search of an SMT solver based on DPLL
and E-matching. It applies to most of the current SMT solvers.

1 Both the library and this particular division are described further in Sect. 6.2.

488 M. Moskal

In order to check unsatisfiability of a formula, an SMT solver will usually first
transform it into an equisatisfiable CNF formula, while simultaneously perform-
ing skolemization. Subsequent proof search alternates between Boolean reason-
ing, theory reasoning, and quantifier instantiation. For the Boolean part we use
resolution. Also the final empty clause is derived using resolution. Theory rea-
soning produces conflict clauses, which are tautologies under respective theories,
e.g., ¬(a > 7) ∨ a ≥ 6 or ¬(c = d) ∨ ¬(f(c) = 42) ∨ ¬(f(d) < 0). Quantifier rea-
soning is based on instantiating universal quantifiers and producing tautologies
like ¬(∀x. f(x) > 0 → P (x)) ∨ ¬(f(3) > 0) ∨ P (3). It can be thought of as just
another background theory.

To make this search procedure return a proof, we need proofs of: CNF transla-
tion, Boolean tautologies and theory tautologies. By taking these three together,
we should obtain a proof that the formula is unsatisfiable.

2 Definitions

Let V be an infinite, enumerable, set of variables. We use x and y (all symbols
possibly with indices) as meta-variables ranging over V . Let Σ be an infinite,
enumerable set of function symbols, we use meta-variable f ranging over Σ. We
define the set of terms T , and the set of patterns P ⊆ T as follows:

T ::= x | f(T1, . . . , Tn) | λx. T1 | cons · (T1, T2) | nil · () | build · (f, T1) |
apply · (T1, T2) | fold · (T1)

P ::= x | f(P1, . . . , Pn)

where n ≥ 0. The notion s · (...) stands for a special form, which have particular
interpretations in the term rewrite system. We will use t1 :: t2 as a syntactic
sugar for cons · (t1, t2), and nil for nil · ().

The set of free variables of a term, FV : T → P(V), is defined as usual:

FV (x) = {x}
FV (f(t1, . . . , tn)) =

⋃
1≤i≤n FV (ti)

FV (λx. t) = FV (t) \ {x}
FV (s · (t1, . . . , tn)) =

⋃
1≤i≤n FV (ti)

Note that it is also defined on P , as P ⊆ T . Let T (A, B) be a set of terms built
from function symbols from the set A and variables from the set B ⊆ V (i.e. if
t ∈ T (A, B) then FV (t) ⊆ B). A substitution is a function σ : V → T , which we
identify with its homomorphic, capture free extension to σ : T → T .

A rewrite rule is a pair (p, t), where p ∈ P , t ∈ T and FV (t) ⊆ FV (p). Let R
be set of such rewrite rules, such that for distinct (p, t), (p′, t′) ∈ R, p and p′ do
not unify. We define a normal form of a term t, with respect to R as nf (t), with
the rules below. Because the function defined below is recursive it is possible for
it not to terminate. If the rules below do not result in a single unique normal
form for term t, then we say that nf (t) = ⊗. If term has ⊗ as subterm, it is
itself regarded as equal to ⊗. In practice this condition is enforced by limiting
running time of the proof checker.

Rocket-Fast Proof Checking for SMT Solvers 489

nf (x) = x

nf (f(t1, . . . , tn)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nf (tσ)
for (p, t) ∈ R such that
∃σ. pσ = f(nf (t1), . . . ,nf (tn))

f(nf (t1), . . . ,nf (tn))
otherwise

nf (λx. t1) = λx.nf (t1)
nf (apply · (λx. t1, t2)) = nf (t1[x := t2])
nf (build · (f, t1 :: · · · :: tn :: nil))

= nf (f(t1, . . . , tn))
nf (build · (f, t1)) = build · (f,nf (t1)) if none of the above apply
nf (s · (t1, . . . , tn)) = s · (nf (t1), . . . ,nf (tn)) if none of the above apply

where t1[x := t2] denotes a capture free substitution of x with t2 in t1
2.

The semantics of the fold · (t) is not defined above. Its role is to perform
theory-specific constant folding on t. Folding is implemented either inside the
proof checker or by an external tool called by the proof checker. In this paper
we use integer constant folding (for example nf (fold · (add(20, 22))) = 42).

The signature used throughout this paper can be divided in four categories:

1. logical connectives: false, implies, and, or, forall, neg
2. theory specific symbols: eq, add, leq, minus and natural number literals

(0, 1, 2, ...)
3. technical machinery: lift known, �, sk
4. rule names

3 Boolean Deduction

Consider the logical system from Fig. 1. It is complete for Boolean logic with
connectives → and ⊥. Three of the derivation rules there ((mp), (absurd) and
(nnpp)) fit a common scheme:

Γ � Ξ1(ψ1, . . . , ψm) . . . Γ � Ξn(ψ1, . . . , ψm)
Γ � Ξ(ψ1, . . . , ψm)

(r)

where Ξi and Ξ are formulas built from the Boolean connectives and formula
meta-variables ψ1, . . . , ψm, while (r) is the name of the rule. We call such rules
standard rules. Additional Boolean connectives can be handled by adding more
standard rules. To encode a standard derivation rule, we use the following
rewrite:

r(�(Ξ1(x1, . . . , xm)), . . . , �(Ξn(x1, . . . , xm)), xi1 , . . . , xil
) �

�(Ξ(x1, . . . , xm))

2 The actual implementation uses de Bruijn indices, so the “capture free” part comes
at no cost.

490 M. Moskal

Proof rule Rewrite rule
Γ � ψ1 → ψ2 Γ � ψ1

Γ � ψ2
(mp)

mp(�(implies(x1, x2)), �(x1)) �
�(x2)

Γ � ⊥
Γ � ψ

(absurd)
absurd(�(false), x) �

�(x)
Γ � (ψ → ⊥) → ⊥

Γ � ψ
(nnpp)

nnpp(�(implies(implies(x, false), false))) �
�(x)

Γ ∪ {ψ1} � ψ2
Γ � ψ1 → ψ2

(assume)

assume(x1, x2) �
lift known(implies(x1,apply · (x2, �(x1))))

lift known(implies(x1, �(x2))) �
�(implies(x1, x2))

ψ ∈ Γ
Γ � ψ

(assumption)

Fig. 1. A complete system for → and ⊥

where xij are additional technical arguments, to fulfill the condition that the
left-hand side of a rule has to contains all the free variables in the right-hand
side and r is a function symbol used to encode this particular rule. Therefore we
can model (mp), (absurd) and (nnpp) using the rewrite rules listed in Fig. 1.

We are left with the (assume)/(assumption) pair, which is modeled using
lambda expressions. There is no explicit rewrite for (assumption) rule. The
term x2 is expected to be of the form λy. t, where t is a proof using y in places
where (assumption) should be used. This is very similar to the encoding of the
Imp-I rule in Edinburgh Logical Framework [10].

We call restricted the terms of the form �(...), lift known(...) or sk(...) (the
last one is used in the next section). We say that P ∈ T is a pre-proof (written
preproof (P)), if it does not contain a restricted subterm, or a subterm which
is a s · (...) special form.

Lemma 1. For any pair (P, σ), such that preproof(P), ∀x ∈ V . xσ = x ∨
∃φ. xσ = �(φ) and nf(Pσ) = �(ψ), there exists a derivation Γ � ψ where
Γ = {φ | x ∈ V , xσ = �(φ)}.

Proof. The proof is by induction on the size of P . Because �(...) is not a subterm
of P , the head of P must be either:

1. a variable x, in which case xσ is �(ψ) and the (assumption) rule can be
used, since ψ ∈ Γ ,

2. P = r(P1, . . . , Pn, t1, . . . , tm), where a rewrite, obtained from a derivation
rule (r), is applicable to:

r(nf (P1σ), . . . ,nf (Pnσ),nf (t1), . . . ,nf (tm))

We use the induction hypothesis on (Pi, σ), where nf (Piσ) = �(ψi) and
build the derivation using the (r) rule.

Rocket-Fast Proof Checking for SMT Solvers 491

Proof rule Rewrite rule

Γ � t = t
(eq refl)

eq refl(x) �
�(eq(x, x))

Γ � t1 = t2 Γ � t2 = t3
Γ � t1 = t3

(eq trans)
eq trans(�(eq(x1, x2)), �(eq(x2, x3))) �

�(eq(x1, x3))
Γ � t1 = t2
Γ � t2 = t1

(eq trans)
eq symm(�(eq(x1, x2))) �

�(eq(x2, x1))
Γ � t1 = t2

Γ � ψ(t1) → ψ(t2)
(eq sub)

eq sub(�(eq(x1, x2)), y) �
�(implies(apply · (y, x1),apply · (y, x2)))

Γ � x + x1 ≤ c1 Γ � −x + x2 ≤ c2
x1 + x2 ≤ c1 + c2

(utvpi trans)
utvpi trans(�(leq(add(x1, x2), x3)), �(leq(add(minus(x1), y2), y3))) �

�(leq(add(x2, y2), fold · (add(x3, y3)))

Fig. 2. The equality rules, and an example of an UTVPI rule

3. P = assume(P1, ψ), which rewrites to �(...) in two steps, through the
lift known(...) (which cannot be used explicitly because preproof (P)).
apply · (P1, �(ψ)) needs to be reduced to �(...) for the lift known(...) to
be applied, so nf (P1) = λx. P2, for some P2. Because no rule can result in
a rewrite to a lambda term (all of the rewrite rules have a term of the form
f(...) as their right hand side), then not only nf (P1), but also P1 itself needs
to start with a lambda binder. Therefore P1 = λx. P3, for some P3. In this
case we use the induction hypothesis on (P3, σ[x := �(ψ)]), and then use
the (assume) rule to construct the implication.

There are no other cases, since no other rewrite rule has �(...) as the right-hand
side. �

Applying this lemma with (P, ∅) gives the theorem.

Theorem 1. For any P , such that preproof(P) and nf(Pσ) = �(ψ) there
exists a derivation � ψ.

Theory Conflicts. Proving theory conflicts clearly depends on the particular
theory. Fig. 2 lists rules for the theory of equality. The encoding is the same
as for the standard rules from Fig. 1. For arithmetic we currently support the
UTVPI fragment [11] of integer linear arithmetic. It consists of inequalities of
the form ax + by ≤ c, where a, b ∈ {−1, 0, 1} and c is an integer. The decision
procedure closes set of such inequalities, with respect to a few rules, of the form
similar to the one listed in Fig. 2. Again, the encoding is the same as for ordinary
deduction rules.

4 Skolemization Calculus

Fig. 3 lists rules for a skolemization calculus. The � is disjoint set union (i.e.
A∪B if A∩B = ∅ and undefined otherwise). The intuition behind S; Q � ψ � φ

492 M. Moskal

Proof rule Rewrite rule
∅; Q � ¬ψ(f(Q)) � φ

{f}; Q � ¬∀x. ψ(x) � φ
(skol)

sk(y, skol(f, y1), neg(forall(x))) �
sk(y, y1, neg(apply · (x,build · (f, y))))

S; Q, x � ψ(x) � φ(x)
S; Q � ∀x. ψ(x) � ∀x. φ(x) (skip∀)

sk(y, skip∀(y1), forall(x1)) �
forall(λx. sk(x :: y, y1,apply · (x1, x)))

∅; Q � ψ � ψ
(id) sk(y, id, x1) � x1

S1; Q � ψ1 � φ1 S2; Q � ψ2 � φ2
S1
 S2; Q � ψ1 ∧ ψ2 � φ1 ∧ φ2

(rec∧)
sk(y, rec∧(y1, y2), and(x1, x2)) �

and(sk(y, y1, x1), sk(y, y2, x2))
S1; Q � ψ1 � φ1 S2; Q � ψ2 � φ2

S1
 S2; Q � ψ1 ∨ ψ2 � φ1 ∨ φ2
(rec∨)

sk(y, rec∨(y1, y2), or(x1, x2)) �
or(sk(y, y1, x1), sk(y, y2, x2))

S1; Q � ¬ψ1 � φ1 S2; Q � ¬ψ2 � φ2
S1
 S2; Q � ¬(ψ1 ∨ ψ2) � φ1 ∧ φ2

(rec¬∨)
sk(y, rec¬∨(y1, y2), neg(or(x1, x2))) �

and(sk(y, y1, neg(x1)), sk(y, y2, neg(x2)))
S1; Q � ¬ψ1 � φ1 S2; Q � ¬ψ2 � φ2

S1
 S2; Q � ¬(ψ1 ∧ ψ2) � φ1 ∨ φ2
(rec¬∧)

sk(y, rec¬∧(y1, y2), neg(and(x1, x2))) �
or(sk(y, y1, neg(x1)), sk(y, y2, neg(x2)))

S1; Q � ψ1 � φ1
S1; Q � ¬¬ψ1 � φ1

(rec¬¬)
sk(y, rec¬¬(y1), neg(neg(x1))) �

sk(y, y1, x1)

Fig. 3. The skolemization calculus

is that for each model M of ∀Q. ψ there exists an extension of M on the symbols
from S that satisfies ∀Q. φ. We formalize it using second order logic with the
following lemma:

Lemma 2. Let Q = {x1, . . . , xn} and S = {f1 . . . fn}. If S; Q � ψ � φ where
ψ ∈ T (Σ, Q), φ ∈ T (Σ � S, Q), then |= ∃2f1 . . . ∃2fn. ∀x1, . . . , xn. ψ → φ.

The key point of the proof is that for the rules of the common form:

S1; Q � Ξ1(ψ1, . . . , ψk) � φ1 . . . Sm; Q � Ξm(ψ1, . . . , ψk) � φm

S1 � . . . � Sm; Q � Ξ(ψ1, . . . , ψk) � Ξ ′(ψ1, . . . , ψk, φ1, . . . , φm)
(r)

where ψj and φj range over first order formulas it is enough to show the following:

∀Q : Type. ∀S1 . . . Sn : Type.
∀ψ1 . . . ψk : Q → Prop.
∀φ1 : S1 × Q → Prop. . . . ∀φm : Sm × Q → Prop.∧

i=1...m(∃fi : Si. ∀x : Q. Ξi(ψi(x), . . . , ψk(x)) → φi(fi, x)) →
(∃f1 : S1. . . . ∃fm : Sm. ∀x : Q. Ξ(ψ1(x), . . . , ψk(x)) →

Ξ ′(ψm(x), . . . , ψk(x), φ1(f1, x), . . . , φm(fm, x)))

which is much like the formula from the lemma, except that there is only one
Skolem constant fi per premise and also there is only one free variable in all the
formulas, namely x. However these symbols are of arbitrary type, so they can
be thought of as representing sequences of symbols.

We prove such formulas for each rule, the reader can find the proof scripts for
Coq proof assistant online [1].

Rewrite encoding. The common form of a rule is encoded as:

sk(y, r(y1, . . . , ym), Ξ(x1, . . . , xk)) �
Ξ ′(x1, . . . , xk, sk(y, y1, Ξ1(x1, . . . , xk)), . . . , sk(y, ym, Ξm(x1, . . . , xk)))

Rocket-Fast Proof Checking for SMT Solvers 493

The first argument of sk(. . .) is the list of universally quantified variables in
scope. The second argument is a rule name, along with proofs of premises. The
third argument is the formula to be transformed.

The encoding of non-common rules (as well as the common rules used here)
is given in the Fig. 3.

Lemma 3. If preproof(P), nf(sk(x1 :: · · · :: xn :: nil, P, ψ)) = ψ′, and for each
occurrence of skol(f) as a subterm of P , the function symbol f does not occur
anywhere else in P nor in ψ, then there exists S, such that S; x1, . . . , xn �
� ψψ′.

Proof. By structural induction over P . �

Theorem 2. If preproof(P), nf(sk(nil, P, ψ)) = ψ′, and for each occurrence
of skol(f) as a subterm of P , the function symbol f does not occur anywhere
else in P nor in ψ, and ψ′ is unsatisfiable then ψ is unsatisfiable.

Proof. By Lemmas 2 and 3. �

5 The Checker

The proof checker reads three files: (1) rewrite rules describing the underlying
logic; (2) a query in SMT-LIB concrete syntax; and (3) the proof. The concrete
syntax for both the rewrite rules and the proof term is similar to the one used
in SMT-LIB. The proof term language includes the following commands:

– let x := t1: bind the identifier x to the term nf (t1)
– initial t1 t2: check if skol(f) is used in t1 only once with each f , that the

f symbols do not occur in t2, compares t2 against the query read from the
SMT-LIB file and if everything succeeds, binds �(nf (sk(nil, t1, t2))) to the
special identifier initial; this command can be used only once in a given
proof

– final t1: checks if nf (t1) = �(false), and if so reports success and exits
– assert eq t1 t2: checks if nf (t1) = nf (t2) (and aborts if this is not the case)
– assert ok t1 t2: checks if nf (t1) = �(nf (t2)) (and aborts if this is not the

case)
– print t1: prints a string representation of t1

The last three commands are used to debug the proofs.
The proofs, after initial skolemization, are structured as a sequence of clause

derivations, using either resolution, theory conflicts, instantiation or CNF-con-
version steps. All these clauses are let-bound, until we reach the empty clause.
Basically we end up with a proof-tree in natural deduction, deriving the Boolean
false constant from the initial formula. The tree is encoded as a DAG, because
let-bound clauses can be used more than once.

494 M. Moskal

Proof rule Rewrite rule
Γ � ψ1 ∧ ψ2

Γ � ψ1
(elim∧1)

elim∧1(�(and(x1, x2))) �
�(x1)

Γ � ψ1 ∧ ψ2
Γ � ψ2

(elim∧2)
elim∧2(�(and(x1, x2))) �

�(x2)
Γ � ψ1 ∨ ψ2

Γ � ¬ψ1 → ψ2
(elim∨)

elim∨(�(or(x1, x2))) �
�(implies(neg(x1), x2))

Γ � ¬ψ Γ � ψ
Γ � ⊥ (elim¬)

elim¬(�(neg(x1))), �((x1)) �
�(false)

Γ � ψ
Γ � ¬¬ψ

(add¬¬)
add¬¬(�(x1)) �

�(neg(neg(x1)))
Γ � ψ → ⊥

Γ � ¬ψ
(intro¬)

intro¬(�(implies(x1, false))) �
�(neg(x1))

Γ � ¬ψ → ⊥
Γ � ψ

(elim¬→)
elim¬→(�(implies(neg(x1), false))) �

�(x1)
Γ � ∀x.ψ(x)

Γ � ψ(t) (inst)
inst(y, �(forall(x))) �

�(apply · (x, y))

Fig. 4. Additional rules for the example

All those steps are best described through an example3. Fig. 4 lists rules not
previously mentioned in this paper, that were used in the proof. The real proof
system has more rules. As described in Sect. 6.1, we mechanically check all rules.
Our example formula is:

P (c) ∧ (c = d) ∧ (∀x. ¬P (x) ∨ ¬(∀y. ¬Q(x, y))) ∧ (∀x. ¬Q(d, x))

The first step is the initial skolemization:

let q1 := forall(λx. or(neg(P (x)), neg(forall(λy. neg(Q(x, y))))))
let q2 := forall(λx. neg(Q(d, x)))
let fin := and(P (c), and(eq(c, d), and(q1, q2)))
let sk := rec∧(id, rec∧(id, rec∧(skip∀(rec∨(id, skol(f, rec¬¬(id)))), id)))
initial sk fin

Here our expectation, as the proof generator, is that ∀x. ¬P (x)∨¬(∀y. ¬Q(x, y))
will be replaced by ∀x. ¬P (x) ∨ Q(x, f(x)), which we express as:

let q3 := forall(λx. or(neg(P (x)), Q(x, f(x))))
let fsk := and(P (c), and(eq(c, d), and(q3, q2)))
assert ok initial fsk

The first step of the actual proof is a partial CNF-conversion. Our CNF conver-
sion uses Tseitin scheme, which introduces proxy literals for subformulas. This
3 The proof presented here is not the simplest possible of this very formula. However

it follows the steps that our SMT solver does and we expect other SMT solvers to
do.

Rocket-Fast Proof Checking for SMT Solvers 495

produces equisatisfiable set of clauses, yet the proof maps the proxy literals back
to the original subformulas. Then the defining clauses of proxy literals become
just basic Boolean facts. We therefore derive clauses of the form fsk → ¬ψ → ⊥,
where ψ is one of the conjuncts of fsk, for example:
let c1 := assume(fsk, λf. assume(neg(eq(c, d)), λp. elim¬(p, elim∧2(elim∧1(f)))))
assert ok c1 implies(fsk, implies(neg(eq(c, d)), false))

and similarly we derive:

assert ok c0 implies(fsk, implies(neg(P (c)), false))
assert ok c2 implies(fsk, implies(neg(q3), false))
assert ok c3 implies(fsk, implies(neg(q2), false))

Next we instantiate the quantifiers:

let c4 := assume(q2, λq. assume(Q(d, f(c)), λi. elim¬(inst(f(c), q), i)))
assert ok c4 implies(q2, implies(Q(d, f(c)), false))
let i1 := or(neg(P (c)), Q(c, f(c)))
let c5 := assume(q3, λq. assume(neg(i1), λi. elim¬(i, inst(c, q))))
assert ok c5 implies(q3, implies(neg(i1), false))

Then we need to clausify i1:

let c6 := assume(i1, λi. assume(P (c), λo1. assume(neg(Q(c, f(c))), λo2.
elim¬(o2, mp(elim∨(i), add¬¬(o1))))))

assert ok c6 implies(i1, implies(P (c), implies(neg(Q(c, f(c)), false)))

Then we do some equality reasoning:
let c7 := assume(neg(Q(d, f(c))), λln. assume(eq(c, d), λe. assume(Q(c, f(c)), λlp.

elim¬(ln, mp(eq sub(e, λx. Q(x, f(c))), lp)))))
assert ok c7 implies(neg(Q(d, f(c))), implies(eq(c, d), implies(Q(c, f(c)), false)))

What remains is a pure Boolean resolution. The resolution is realized by assum-
ing the negation of the final clause and then using unit resolution of the assumed
literals and some previous clauses, to obtain new literals, and as a last step, the
false constant. We first resolve c4 with c7:

let c8 := assume(q2, λl1. assume(eq(c, d), λl2. assume(Q(c, f(c)), λl3.
mp(mp(mp(c7, intro¬(mp(c4, l1))), l2), l3)

assert ok c8impliesq2, implieseq(c, d), impliesQ(c, f(c)), false

and finally we derive (also through resolution) the false constant:

let kq2 := elim¬→(mp(c3, initial))
let kq3 := elim¬→(mp(c2, initial))
let kp := elim¬→(mp(c0, initial))
let ke := elim¬→(mp(c1, initial))
let kq := elim¬→(mp(mp(c6, elim¬→(mp(c5, kq3))), kp))
let c9 := mp(mp(mp(c8, kq2), ke), kq)
final c9

496 M. Moskal

6 Implementation

We have implemented two versions of the proof checker: one full version in OCaml
and a simplified one written in C. Proof generation was implemented inside the
Fx7 [1] SMT solver, implemented in the Nemerle programming language. The
solver came second in the AUFLIA division of 2007 SMT competition, being
much slower, but having solved the same number of benchmarks as the winner,
Z3 [6].

An important point about the implementation, is that at any given point, we
need to store only terms, that can be referenced by let-bound name, and thus
the memory used by other terms can be reclaimed. As in our encoding the proof
terms actually rewrite to formulas that they prove, there is no need to keep the
proof terms around. We suspect this to be the main key to memory efficiency of
the proof checker. The C implementation exploits this fact, the OCaml one does
not.

Both implementations use de Bruijn [5] indices in representation of lambda
terms. We also use hash consing, to keep only a single copy of a given term. We
cache normal forms of the terms, we remember what terms are closed (which
speeds up beta reductions). Also a local memoization is used in function com-
puting beta reduction to exploit the DAG structure of the term. The rewrite
rules are only indexed by the head symbol, if two rules share the head symbol,
linear search is used.

All the memoization techniques used are crucial (i.e., we have found proofs,
where checking would not finish in hours without them).

The OCaml implementation is about 900 lines of code, where about 300 lines
is pretty printing for Coq and Maude formats. The C implementation is 1500
lines. Both implementation include parsing of the proof and SMT formats and
command line option handling. The implementations are available online along
with the Fx7 prover.

6.1 Soundness Checking

The OCaml version of the checker has also a different mode of operation, where
it reads the rewrite rules and generates corresponding formulas to be proven in
the Coq proof assistant. There are three proof modes for rules:

– for simple facts about Boolean connectives, arithmetic and equality, the
checker generates a lemma and a proof, which is just an invocation of ap-
propriate tactic

– for other generic schemas of proof rules from Sect. 3 and 4, the checker
produces proof obligations, and the proofs need to be embedded in the rule
descriptions

– for non-generic proof rules, the user can embed both the lemma and the
proof in the rule description file, just to keep them close

This semiautomatic process helps preventing simple, low-level mistakes in the
proof rules. The checker provides commands to define all these kinds of rules
and associated proofs.

Rocket-Fast Proof Checking for SMT Solvers 497

Directory Total UNSAT % UNSAT Fake % Fake Fail % Fail
front end suite 2320 2207 95.13% 101 4.35% 12 0.52%
boogie 908 866 95.37% 25 2.75% 17 1.87%
simplify 833 729 87.52% 44 5.28% 60 7.20%
piVC 41 17 41.46% 10 24.39% 14 34.15%
misc 20 16 80.00% 0 0.00% 4 20.00%
Burns 14 14 100.00% 0 0.00% 0 0.00%
RicartAgrawala 14 13 92.86% 0 0.00% 1 7.14%
small suite 10 8 80.00% 0 0.00% 2 20.00%

Fig. 5. Results on the AUFLIA division of SMT-LIB

6.2 Performance Evaluation

When running Fx7 on a query there are five possible outcomes:

– it reports that the query is unsatisfiable, and outputs a proof
– it reports that the query is unsatisfiable, but because the proof generation is

only implemented for the UTVPI fragment of linear arithmetic, the proof is
correct only if we assume the theory conflicts to be valid (there is typically
a few of them in each of such “fake” proofs)

– it reports the query is satisfiable, timeouts or runs out of memory

Tests were performed on AUFLIA benchmarks from the SMT-LIB [14]. This
division includes first order formulas, possibly with quantifiers, interpreted under
uninterpreted function symbols, integer linear arithmetic and array theories.
They are mostly software verification queries. The machine used was a 2.66GHz
Pentium 4 PC with 1GB of RAM, running Linux. The time limit was set to ten
minutes.

The results are given in Fig. 5. The “Total” column refers to the number
of benchmarks marked unsatisfiable in the SMT-LIB; “UNSAT” refers to the
number of cases, where the benchmark was found unsatisfiable and a correct
proof was generated; “Fake” is the number of benchmarks found unsatisfiable,
but with “fake” proofs; finally “Fail” is the number of cases, where Fx7 was
unable to prove it within the time limit. It should be the case that UNSAT +
Fake + Fail = Total. The percentages are with respect to the Total.

With the C implementation, proof checking a single proof never took more
than 7 seconds. It took more than 2 seconds in 4 cases and more than 1 second in
19 cases (therefore the average time is well under a second). The maximal amount
of memory consumed for a single proof was never over 7MB, with average being
2MB.

We have also tested the C implementation on a Dell x50v PDA with a
624MHz XScale ARM CPU and 32MB of RAM, running Windows CE. It was
about 6 times slower than the Pentium machine, but was otherwise perfectly
capable of running the checker. This fact can be thought of as a first step on
a way to PCC-like scenarios on small, mobile devices. Other devices of simi-
lar computing power and, what is more important, RAM amount include most
smart phones and iPods.

498 M. Moskal

The OCaml implementation was on average 3 times slower than the C
version, it also tends to consume more memory, mostly because it keeps all the
terms forever (which is because of our implementation, not because of OCaml).

We have also experimented with translating the proof objects into the Maude
syntax [3]. We have implemented lambda terms and beta reduction using the
built-in Maude integers to encode de Bruijn indices and used the standard equa-
tional specifications for the first order rules. The resulting Maude implementa-
tion is very compact (about 60 lines), but the performance is not as good as
with the OCaml or C implementation — it is between 10 and 100 times slower
than the OCaml one. It also tends to consume a lot more memory. The reason is
mainly the non-native handling of lambda expressions. Beta reductions translate
to large number of first order rewrites, which are then memoized, and we were
unable to instrument Maude to skip memoization of those.

We have performed some experiments using Coq metalogic as the proof
checker. We did not get as far as implementing our own object logic. The main
obstacle we have found was the treatment of binders. Performing skolemization
on a typical input results in hundreds of Skolem functions. When using a higher
order logic prover, such functions are existentially quantified and the quantifiers
need to be pushed through the entire formula to the beginning. Later, during
the proof, we need to go through them to manipulate the formula. This puts too
much pressure on the algorithms treating of binders in the higher order prover.
In our approach Skolem functions are bound implicitly, so there is no need to
move them around. This is especially important in SMT queries, where the vast
majority of the input formula is ground and quantified subformulas occur only
deep inside the input. We can therefore keep most of the formula binder-free. We
were not able to perform any realistic tests, as Coq was running out of memory.

Both Maude and Coq are far more general purpose tools than just proof
checkers. However relatively good results with Maude suggest that using a simple
underlying formalism is beneficial in proof checking scenarios.

7 Related and Future Work

CVC3 [2] and Fx7 were the only solvers participating in the 2007 edition of the
SMT competition to produce formal proofs. The proof generation in CVC3 is
based on the LF framework. We are not aware of a published work evaluating
proof checking techniques on large industrial benchmarks involving quantifiers.

Formalisms for checking SMT proofs have been proposed in the past, most
notably using an optimized implementation [15] of Edinburgh Logical Frame-
work [10]. However even with the proposed optimizations, the implementations
has an order of magnitude higher memory requirements than our solution. Also
the implementation of the checker is much more complicated.

Recently a Signature Compiler tool has been proposed [16]. It generates a
custom proof checker in C++ or Java from a LF signature. We have run our
proof checker on a 1:1 translation of the artificial EQ benchmarks from the
paper. It is running slightly faster than the generated C++ checker. The memory

Rocket-Fast Proof Checking for SMT Solvers 499

requirements of our implementation are way below the size of the input file on
those benchmarks. The checkers remain to be compared on real benchmarks
involving richer logics and quantifiers.

In context of the saturation theorem provers it is very natural to output
the proof just as a sequence of resolution or superposition steps. What is miss-
ing here, is the proof of CNF translation, though proof systems has been pro-
posed [8], [7] to deal with that.

Finally, work on integrating SMT solvers as decision procedures inside higher
order logic provers include [12], [9], [4]. The main problem with these approaches
is that proof generation is usually at least order of magnitude faster than proof
checking inside higher order logic prover. The Ergo [4] paper mentions promising
preliminary results with using proof traces instead of full proofs with Coq for
theory conflicts. It is possible that using traces could also work for CNF conver-
sion and skolemization. Yet another approach mentioned there is verifying the
SMT solver itself.

An important remaining problem is the treatment of theory conflicts. One
scenario here is to extend the linear arithmetic decision procedure to produce
proofs. It should be possible to encode the proofs with just a minor extensions to
the rewrite formalism. Another feasible scenario is to use a different SMT solver
as a oracle for checking the harder (or all) theory conflicts. This can be applied
also to other theories, like bit vectors or rational arithmetic.

8 Conclusions

We have shown how term rewriting can be used for proof checking. The high-
lights of our approach are (1) time and space efficiency of the proof checker;
(2) simplicity of the formalism, and thus simplicity of the implementation; and
(3) semiautomatic checking of proof rules. The main technical insight is that
the proof rules can be executed locally. Therefore the memory taken by proofs
trees can be reclaimed just after checking them and reused for the subsequent
fragments of the proof tree.

The author wishes to thank Joe Kiniry, Mikolás̆ Janota, and Radu Grigore
for their help during the work on the system, and Nikolaj Bjørner as well as
anonymous TACAS reviewers for his help in getting the presentation of this
paper better.

This work was partially supported by Polish Ministry of Science and Educa-
tion grant 3 T11C 042 30.

References

1. Fx7 web page, http://nemerle.org/fx7/
2. Barrett, C., Berezin, S.: CVC Lite: A new implementation of the Cooperating

Validity Checker. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
515–518. Springer, Heidelberg (2004)

http://nemerle.org/fx7/

500 M. Moskal

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Que-
sada, J.F.: Maude: Specification and programming in rewriting logic. Theoretical
Computer Science (2001)

4. Conchon, S., Contejean, E., Kanig, J., Lescuyer, S.: Lightweight Integration of
the Ergo Theorem Prover inside a Proof Assistant. In: Second Automated Formal
Methods workshop series (AFM 2007), Atlanta, Georgia, USA (November 2007)

5. de Bruijn, N.G.: Lambda-calculus notation with nameless dummies: a tool for
automatic formula manipulation with application to the Church-Rosser theorem.
Indag. Math. 34(5), 381–392 (1972)

6. de Moura, L., Bjorner, N.: Efficient E-matching for SMT solvers. In: Proceedings of
the 21st International Conference on Automated Deduction (CADE-21), Springer,
Heidelberg (to appear, 2007)

7. de Nivelle, H.: Implementing the clausal normal form transformation with proof
generation. In: fourth workshop on the implementation of logics, Almaty, Kazach-
stan, University of Liverpool, University of Manchester, pp. 69–83 (2003)

8. de Nivelle, H.: Translation of resolution proofs into short first-order proofs without
choice axioms. Information and Computation 199(1), 24–54 (2005)

9. Fontaine, P., Marion, J.-Y., Merz, S., Nieto, L.P., Tiu, A.: Expressiveness + au-
tomation + soundness: Towards combining SMT solvers and interactive proof as-
sistants. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006.
LNCS, vol. 3920, pp. 167–181. Springer, Heidelberg (2006)

10. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. In: Proceed-
ings 2nd Annual IEEE Symp. on Logic in Computer Science, LICS 1987, Ithaca,
NY, USA, June, 22–25, 1987, pp. 194–204. IEEE Computer Society Press, New
York (1987)

11. Harvey, W., Stuckey, P.: A unit two variable per inequality integer constraint solver
for constraint logic programming (1997)

12. McLaughlin, S., Barrett, C., Ge, Y.: Cooperating theorem provers: A case study
combining HOL-Light and CVC Lite. In: Armando, A., Cimatti, A. (eds.) Pro-
ceedings of the 3rd Workshop on Pragmatics of Decision Procedures in Automated
Reasoning (PDPAR 2005), Edinburgh, Scotland, January 2006. Electronic Notes in
Theoretical Computer Science, vol. 144(2), pp. 43–51. Elsevier, Amsterdam (2006)

13. Necula, G.C.: Proof-carrying code. In: Conference Record of POPL 1997: The 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Paris, France, January 1997, pp. 106–119 (1997)

14. SMT-LIB: The Satisfiability Modulo Theories Library,
http://www.smt-lib.org/

15. Stump, A., Dill, D.: Faster Proof Checking in the Edinburgh Logical Framework.
In: 18th International Conference on Automated Deduction (2002)

16. Zeller, M., Stump, A., Deters, M.: A signature compiler for the Edinburgh Logical
Framework. In: Proceedings of International Workshop on Logical Frameworks and
Meta-Languages: Theory and Practice (2007)

http://www.smt-lib.org/

	Introduction
	Contributions
	Proof Search in SMT Solvers

	Definitions
	Boolean Deduction
	Skolemization Calculus
	The Checker
	Implementation
	Soundness Checking
	Performance Evaluation

	Related and Future Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

