
Refactoring Local to Cloud Data Types for Mobile Apps

Michael Hilton
Oregon State University, USA
hiltonm@eecs.oregonstate.edu

Arpit Christi
Oregon State University, USA
christia@eecs.oregonstate.edu

Danny Dig
Oregon State University, USA
digd@eecs.oregonstate.edu

Michał Moskal
Microsoft Research, USA

Michal.Moskal@microsoft.com

Sebastian Burckhardt
Microsoft Research, USA
sburckha@microsoft.com

Nikolai Tillmann
Microsoft Research, USA
nikolait@microsoft.com

ABSTRACT
Mobile cloud computing can greatly enrich the capabilities of
today’s pervasive mobile devices. Storing data on the cloud can
enable features such as automatic backup, seamless transition
between multiple devices, and multiuser support for existing apps.
However, the process of converting local into cloud data types
requires high expertise, is difficult, and time-consuming. Refactoring
techniques can greatly simplify this process.

In this paper we present a formative study where we analyzed
and successfully converted four real-world touchdevelop apps into
cloud-enabled apps. Based on these lessons, we designed and im-
plemented, CLOUDIFYER, a tool that automatically refactors local
data types into cloud data types on the touchdevelop platform. Our
empirical evaluation on a corpus of 123 mobile apps resulting in
2722 transformations shows (i) that the refactoring is widely appli-
cable, (ii) CLOUDIFYER saves human effort, and (iii) CLOUDIFYER is
accurate.

Categories and Subject Descriptors D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement

General Terms Refactoring

Keywords Refactoring, Cloud Computing, Empirical Study

1. INTRODUCTION
The marriage of cloud and mobile computing has transformed our
access to data. If users lose their phone, upon activating a new phone,
all the data (e.g., contacts, pictures) is there due to the automatic
backup of data. A user can start editing a document on their mobile
device and resume editing it on their tablet at home, thus seamlessly
transitioning between multiple devices operating on the same data.
Additionally, the cloud enables rich, multi-user apps. Examples
abound from domains such as social networking (e.g., Facebook,
Twitter), multiplayer games, and collaborative data collection (e.g.,
Citizen Science [7]).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
MOBILESoft’14, June 2-3, 2014, Hyderabad, India.
Copyright c© 14 ACM /14/06. . . $15.00.

To take advantage of the benefits of the cloud, app developers
face a high entry barrier. They need expertise on many topics:
communication protocols (e.g., web services, REST, SOAP, etc.),
data storage (e.g., Amazon S3, Microsoft SkyDrive, etc.), databases,
cloud infrastructure (e.g., Amazon EC2, Windows Azure, etc.),
programming or scripting languages. Similarly, converting a single
into a multiuser app has a high entry barrier: they need to determine
the candidate data structures and methods that operate on data
structures as well as move them to the cloud. Currently, this process
is manual, time consuming, and error prone [15].

In this paper we are lowering the entry barrier to allow even
hobbyists and beginner app developers to use the cloud. Thus, we
are targeting touchdevelop [30], a programming environment and
language developed by Microsoft Research to write apps on mobile
devices for mobile devices. We are employing automated refactoring
techniques to convert local data types into cloud data types.

touchdevelop introduced specialized cloud data types [5] that
provide an abstraction layer over web service implementation,
communication protocols, and storage. In order to make the app
responsive, even when the connection to the server is unavailable,
cloud data types provide both local copies of the data as well as
eventually consistent sharable cloud storage. This paradigm allows
programmers to use cloud types in a similar manner to local data
structures, but to also enjoy the benefits of the cloud.

In this paper we present the results of our formative study to
convert local to cloud-enabled apps. We used four publicly available
touchdevelop apps (three productivity tools and one game) and
manually converted them into multi-user apps that share data via the
cloud. In doing so, we discovered four conversion steps: (i) identify
local data structures that need to be moved to the cloud, (ii) for each
identified local data structure add a new cloud data structure, (iii)
replace local data type API calls with cloud API calls, (iv) initialize
the cloud data types. Not all these steps can be automated; some
(e.g., identifying data types that need to be moved) require domain
knowledge which is best provided by the app developer.

Using the lessons that we learned from the formative study,
we designed and implemented a refactoring tool, CLOUDIFYER, to
automate the conversion of local Number Collection into Cloud
Data Table, and to transform the API calls. We selected this
refactoring because its manual application is challenging for several
reasons. In addition to differences in the names of the APIs, there
are also differences in the cardinality of the mapping. Sometimes
the mapping is 1-to-1 (e.g., count is the same for both data types),
while other times the mapping is 1-to-many (e.g., insert at from
Collection is transformed into a sequence of 3 operators from
Table). Sometimes there is no mapping at all, in which case

CLOUDIFYER injects functions to achieve the same computation. For
example, collection->max needs to be converted into a function
that iterates atomically over the elements of the Table.

This paper makes the following contributions:

• Idea: To the best of our knowledge, we are the first to enable
hobbyists and beginner programmers to tap into the power
of mobile cloud computing through the use of refactoring
techniques.
• Formative Study: We have conducted a formative study on

four real-world apps to learn what transformations are needed to
convert single to multi-user mobile apps.
• Tool: We have designed and implemented the analysis and

transformation algorithms to refactor local data types into cloud
data types on the touchdevelop platform.
• Evaluation: We have evaluated our tool, CLOUDIFYER, on a

corpus of 123 mobile apps, resulting in 2722 transformations.
The results show (i) that the refactoring is widely applicable:
94% of the candidate local Collections were successfully
refactored into Cloud Data Table. Second, CLOUDIFYER saves
human effort: on average it took 3 seconds for each performed
refactoring. Third, CLOUDIFYER is accurate: 100% of the applied
transformations are correct, and the tool correctly identified 95%
of all necessary transformations. The tool and all the data are
publicly available at:
http://cope.eecs.oregonstate.edu/cloudifier

2. BACKGROUND ON TOUCHDEVELOP
AND CLOUD DATA TYPES

touchdevelop is a programming language and integrated develop-
ment environment (IDE) that allows the development of mobile
applications (called scripts) on any device, for any device. It pro-
vides a development experience that is both ubiquitous and social:
ubiquitous because the IDE is optimized for operation on touch-
screen devices like phones or tablets, and social because scripts and
libraries can be easily shared, forked, commented on, reviewed, and
published in the cloud. Both touchdevelop and the touchdevelop
scripts are compiled to HTML5/JavaScript, thus they can execute
on all major smartphone, tablet, and personal computer brands.

The main purpose of touchdevelop is: (i) to provide an instru-
ment for enticing and educating the next generation of programmers,
and (ii) to develop novel programming language features that can
simplify and accelerate the development of cloud-connected mobile
applications (of which touchdevelop itself is a prime example). An
example of the latter are cloud data types [5], which were recently
added to touchdevelop.

Cloud types make it easy to share data between instances of
the app running on multiple devices, by simply declaring such data
to be of a particular cloud type. Once declared, the runtime then
automatically synchronizes the data across multiple devices that are
part of the same cloud session. A cloud session may include devices
by a single user or by multiple users. For example, a single user
may want to synchronize settings, calendars, contact lists, or any
other script data between various devices she owns. Examples of
multiple-user scenarios include a simple grocery list (to help family
members keep track of items to be purchased on the next trip to the
store), multi-player games that share game state, or applications that
include typical social features like comments, reviews, achievements,
high scores, and so on.

There are three categories of cloud data.

Cloud variables have a name and a type, which can be a simple
type (number, string, etc.) or a reference to a cloud table row.

All cloud variables support get and set operations. Number
variables also support an add operation.

Cloud tables are declared to have a name, and any number of
named, typed columns. The types available for the columns
are the same as for cloud variables. Tables support operations
for adding a new row (always appended at the end of the table),
deleting a row (deletion is permanent and idempotent), and
enumerating over rows (in the order they were appended).

Cloud indexes are made up of entries that contain keys and values.
All keys and values have names and types. The index contains
exactly one entry for each key or combination of keys, and this
entry can be retrieved using the at operation. Note that it is not
possible to add or remove entries from indexes (because there is
always exactly one entry per key). Entries for which all values
are the default value are considered ’empty’. Indexes support
enumeration of all non-empty entries. The number of non-empty
entries is always finite, even if the number of entries is infinite
(for example, if using a key of type string).

Cloud types are integrated into the programming language and
are thus as easy to use as data types used by traditional programming
languages, (simple types, objects, and collections) but their interface
is more similar to types typically used for persistent storage (such
as tables and indexes). The reason for this design choice is that
cloud types are designed specifically to support synchronization of
replicas in a distributed system with a reliable server and clients
that may crash silently. In such a system, garbage collection is
impossible as the server never knows if there is some client alive
with a reference to a particular piece of data). The memory must
thus be managed explicitly, which is facilitated by using globally
named variables, tables and indexes. Also, since client devices can
read and update local data at all times (whether connected or not),
the server must resolve conflicts. To this end, all operations on the
cloud types are designed to support automatic conflict resolution, i.e.
eventual consistency can be obtained by determining a total order
of conflicting updates on the server [5, 29]. Such conflict resolution
is easier when the semantics is implicit in the type instead of
being encoded in arbitrary heap operations—for example, consider
resolving conflicts in a table where two devices add a row, versus a
linked list where two devices change a pointer’s value somewhere.

As a consequence, programs that use classical heap-based object
and collection data types require refactoring to take advantage of
the automatic persistence and synchronization provided by cloud
types. Roughly, this amounts to making classes correspond to tables,
objects to rows, and fields to columns.

2.1 Consistency Model
As multiple clients can concurrently update the same data, even
during offline operation, conflicts may need to be resolved after-
the-fact, in a manner that guarantees eventual consistency. To give
the reader a general idea, we now briefly describe the mechanism
used in touchdevelop, which is a simple, specialized form of
eventually consistent transactions [4] and guarantees causal eventual
consistency.

For each cloud session, touchdevelop stores a log of all updates
performed in the cloud. The basic idea is to use what is often called
primary replication: Client devices (secondary replicas) stream all
locally issued updates to the touchdevelop server (primary replica).
The server interleaves all updates in the order received, and stores
them in log which reflects the final ordering of the updates. The
server also streams the final update log back to the clients, where the
updates in the log get applied to the locally stored copy of the data.
However, this basic primary replication mechanism is enhanced in
several ways:

http://cope.eecs.oregonstate.edu/cloudifier

1. Local Buffers. Local updates are made visible immediately, not
only after they are echoed (confirmed) by the server. Conceptu-
ally, the client maintains a buffer of unconfirmed updates, similar
to store buffers in the TSO memory model, and superimposes
the effect of these updates over the current confirmed state. The
use of such buffers improves the perceived performance and
allows seamless offline operation, but breaks strong consistency
(which is a necessary consequence of allowing offline operation,
as the CAP theorem [3, 13] shows).

2. Automatic Transactions. Updates are transmitted not individ-
ually, but as a group (called an update transaction). The trans-
action boundaries are determined automatically based on the
event queue: any time there is no event executing (i.e. when the
execution is quiesced), the current transaction is ended and a
new one is started. The use of automatic transactions helps to
avoid typical atomicity errors when updating multiple data items
at the same time.

3. Cloud Types. The updates in the log are not just simple write
operations, but mirror the rich semantics of the cloud types.
Cloud types allow programmers to work around limitations of
the weak consistency model, because they allow semantically
meaningful conflict resolution simply by ordering the updates
into a consistent order. For example, the cloud number type
provides an add method in addition to the usual get and set.
Applications of add from multiple clients can be meaningfully
merged by the server, whereas set has the last-writer-wins
semantics.

Because a weak consistency model is used, refactoring for cloud
types can introduce consistency errors that were not present in the
original program. The responsibility for identifying such problems
and correcting them remains with the user.

Example Let’s consider a client A performing two updates, x :=
x + 2 followed by x := x + 4, in an event handler E. Client B is
executing x := x + 3, where x is initially 0. These are the only
possible executions:

• B’s update is streamed to server and then to A before E starts
executing, in which case x will be eventually 9
• A performs its updates, setting x to 6, and B sets x to 3.

Depending in which order the updates reach the server the
eventual value of x will be either 3 or 6. Regardless, while
E is executing, A will keep seeing x as 6 from the point of the
second update on (due to local buffers above), and only in the
next event it may discover that it is now in fact 3.

Note that an update from the server cannot arrive between the two
updates in E (due to automatic transactions above). Also note that if
the updates were x->add(2); x->add(4) for A, and x->add(3)
for B, then the eventual value of x would be always 9, but A could
still see x as 6 or 9 after its updates.

2.2 TouchDevelop plug-ins
The touchdevelop IDE can be extended with user-provided plug-
ins, which are just regular touchdevelop scripts conforming to a
specific interface. In general, touchdevelop scripts can query and
update abstract syntax trees (ASTs) of scripts installed on the device
(after asking the user for permission). A plug-in is invoked by the
user when editing a script. The identifier of that script is passed to a
specific action in the plug-in, that can then read and write the AST.
The AST is represented as a JSON object, which can be manipulated
using standard touchdevelop libraries (for purely client-side plug-
ins), or shipped over to a cloud service of plug-in author’s choice
for processing.

Currently, touchdevelop supports plug-in invocation on an entire
script, where the plug-in can ask the user to point to a particular
AST node to operate on if necessary. In near future, we plan to have
plug-ins invoked contextually for a given definition or expression.

When the user taps the plug-in invocation button, touchdevelop
shows a list of currently installed scripts marked with #scriptPlugin
in their description. The user has also an option of searching
touchdevelop cloud for more such scripts. We thus reuse the script
distribution and rating mechanisms for plug-ins.

After plug-in execution, the user may be shown the diff with the
changes performed by the plugin and asked to confirm them.

3. FORMATIVE STUDY
We selected four apps from the touchdevelop script bazaar for our
formative study. We chose representative apps from various domains
that cover different features and use cases of touchdevelop. We also
looked for apps where we could envision multi-user functionality.
We then converted these apps from single-user to multi-user apps. In
this section we describe the script’s behavior, the process to convert
them, as well as the changes we needed to make.

The first app we selected was MILEAGE TRACKER, which is
publicly available (the script id can be found at [?]). Mileage Tracker
is an app that records and calculates fuel usage in Miles per Gallon
(MPG) and displays how it changes over time. We began by adding
some functionality to the original app. We then converted Milage
Tracker into a multi-user app, such that multiple family members
using the same family car can collect the fuel usage even across
multiple devices.

Business Manager+ [?] is an app to track business contacts. We
converted it into a multi-user app so that business colleagues can
share their contact list with each other.

CliffHangers [?] is a clone of the popular game “hangman."
The player is presented with a series of blanks, and they must guess
the letters that fill in the blanks to make a word. The player has
a limited number of guesses, and if they cannot guess the word
before they reach the limit, they lose the game. We converted it into
a multi-player game so that two players can collaboratively work
together on separate devices to guess the word.

MyAssignment [?] is an app for students to track their class
assignments or projects. A single user can input information about
projects, progress, due dates, etc. We converted it into a multi-user
app so that multiple students can collaborate on class assignments.

After converting these apps, we ran them with multiple users on
three devices to verify that in fact the apps work correctly. They are
all publicly available [?].

Based on the lessons we learned from converting these four apps,
we designed a process to convert a single to a multi-user app. Our
process consists of four steps:

1. Identify data that needs to be moved to the cloud

2. Create new cloud data types to hold the shared data

3. Replace the local usage with cloud usage for the shared data

4. Initialize cloud data

Next we will illustrate these steps using the MILEAGE TRACKER

app. In step 1 we identified the data that needed to be shared: (i) the
MilageRecord is a collection of numbers that holds the Miles Per
Gallon for the past usage consumption, (ii) MaximumRecordEntries
is a number that determines how many records should be stored, (iii)
UseUSUnits is a boolean that stores the preference between metric
or imperial units.

To illustrate step 2, let us consider one of the shared data
types, the MilageRecord collection. We created a new Cloud Data
Table named MileageRecordTable to hold the data. Notice that the

original data is stored in a one-dimensional data structure, whereas
the Cloud Data Table is a two-dimensional data structure.

In step 3 we replaced all the uses of the local MilageRecord with
uses of MileageRecordTable.

In step 4 we initialized MileageRecordTable. Since the data is
now persistent on the cloud, we need to change the initialization code
from eager to lazy in order to avoid erasing all the data every time
the app is launched. In addition, we need to make a choice between
using the cloud (i) as a backup for the data for one user across
multiple devices(“just me session”) or (ii) to enable collaboration
between multiple users across multiple devices (“everyone session”).
These changes required adding 3 LOC and updating 2 LOC.

Notice that steps 1 and 4 require domain knowledge in order to
choose and refine the proper end-user experience.

Based on the type of the input as well as the local data that
we needed to migrate to cloud, we have identified three kinds of
refactorings. Each refactoring can be performed using the general
steps that we identified above. First, we refactored primitive data
types into the corresponding cloud-enabled primitive type (e.g., from
Number to Cloud Number). Second, we refactored local Data Table
into Cloud Data Table. Third, we refactored local Collection into
Cloud Data Table.

When carrying out the refactorings, we noticed that steps 1 and
4 are hard to automate as they require understanding the original
program and the desired end-user experience. It took the second
author an average of 6 minutes to perform steps 1 and 4 for each
app in the formative study. Steps 2 and 3 have different degrees of
complexity. The first two kinds of refactorings are trivial because
there is a perfect match between the local data and the cloud data
type, so the change is as simple as prepending the keyword Cloud
to the variable declaration.

The third kind of refactoring is non-trivial: it requires changing
the program from using a flat, one-dimensional Collection to a two-
dimensional Cloud Data Table, as shown in Figure 1. The APIs
are different enough that sometimes we needed to map one function
call from Collection into a sequence of calls from Table, whereas
other times we had to augment the API by writing new functions.

Figure 1. Conversion from Number Collection to Cloud Data Table

For these reasons, we automated this refactoring.
Table 1 lists the total number of refactorings that we applied as

part of our formative study.

4. AUTOMATED REFACTORING
This section presents our automated refactoring which converts from
a local Number Collection to a Cloud Data Table. This refactor-
ing is composed of several transformations. The transformations
are the individual changes that CLOUDIFYER must apply to the pro-

Table 1 Refactorings used in the formative study

App Primitive Local Table to Collection
Name to Cloud Cloud Table to Cloud

MileageTracker 2 0 1
Buisness Manager+ 0 0 5

CliffHangers 8 0 2
My Assignments 0 1 0

Total 10 1 8

gram in order to accomplish this refactoring. We implemented the
refactoring in a tool, CLOUDIFYER, which itself is a touchdevelop
app.

Section 4.1 presents the workflow of using the tool. Section 4.2
presents the preconditions that must be true before applying the
refactoring. Section 4.3 presents the three kinds of transformations
needed to perform the refactoring.

4.1 Workflow
CLOUDIFYER is implemented as a touchdevelop app. It can be run
using the touchdevelop platform like any other touchdevelop app.
Once it is run, the app first prompts the user to select a script on
which to perform the refactoring. Once the user has selected a
script, CLOUDIFYER will display all the possible refactoring targets
for the chosen script, and allow the user to choose which Number
Collection they wish to convert to a Cloud Data Table. CLOUDI-
FYER will then perform all the needed transformations on the selected
Number Collection in an automated fashion.

4.2 Preconditions
In the current implementation of touchdevelop, there are some
differences in how Number Collections and Cloud Data Tables
are treated. For example, an instance of a Number Collection can
be passed as an argument or returned from a touchdevelop func-
tion. However, Cloud Data Tables cannot be passed as function
arguments, or returned from functions. Also, Number Collections
can be assigned to a variable, where as Cloud Data Tables cannot.
Based on these differences, we developed two preconditions that
must be met before CLOUDIFYER can perform a refactoring. These
preconditions are inherent to how the touchdevelop language works,
not limitations of our tool.

(P1) A Number Collection instance must not be passed as an
argument or returned from a function.

(P2) A Number Collection instance must not be assigned to a
variable.

4.3 Transformations
There are four categories of transformations to refactor Number
Collection to Cloud Data Tables: (i) creating Cloud Data Table
data structure, (ii) direct mapping of APIs, (iii) indirect mapping of
APIs, and (iv) injected function to augment missing APIs. Table 2
displays the mapping between the APIs of the two data types.

We will illustrate the transformations using simplified code
snippets from the MileageTracker app that we introduced in the
Formative Study (see Section 3), an app that enables users to track
their fuel usage. Figure 2 shows the code before and after the refac-
toring. The left column shows the original code. Line 1 shows the
declaration of the MileageRecord Number Collection, which is
the target of the refactoring. We show four functions to display all
mileage record, clear existing mileage record, add a new entry to the
mileage collection, and compute and display the average mileage.

Table 2 Number Collection API’s and corresponding Cloud Data Table Operations.

Number Collection Operations Cloud Table Operations Transformation Type
clear clear Direct
count count Direct

post to wall post to wall Direct
add add row Indirect
at row at Indirect

set at row at→valueName Indirect
remove at row at→deleteRow Indirect
insert at row at→value Indirect
add many NONE Injected Function

avg NONE Injected Function
contains NONE Injected Function
index of NONE Injected Function

max NONE Injected Function
min NONE Injected Function

random NONE Injected Function
remove NONE Injected Function
reverse NONE Injected Function
sort NONE Injected Function
sum NONE Injected Function

Create Cloud Data Table data structure: Lines 1-3 of the
right-hand side of Figure 2 show the newly created data structure,
MileageRecordTable. We append the Table to the end of the name
for clarity. This Table contains one column, MileageRecordColumn.
We will use this column to store the values that were originally
stored in the MileageRecord collection.

Direct Transformations: The simplest transformations are those
when the mapping from the Number Collection to Cloud Data
Table APIs is one-to-one and both data types use the same name
(e.g., post to wall). In this case, the transformation consists of
simply replacing the receiver object. Figure 2 (a) line 8 shows the
API call before the transformation, while Fig. 2 (b) line 8 shows the
code after the transformation.

Indirect Transformations: Indirect Transformations are more
complex than Direct Transformations, and cannot be performed
with a simple find-and-replace technique. We use Indirect Trans-
formations when the same functionality can be accomplished in
both data types, but the APIs are different: the cardinality and/or the
name is different. Sometimes, the transformation maps one API call
from the Number Collection into a sequence of API calls from the
Cloud Data Table. In addition, sometimes it turns a function call
into an assignment, further increasing complexity.

One example of an Indirect Transformation is shown in Fig-
ure 2. The function AddMileageToRecord adds a number to the
MileageRecord Number Collection. Line 26 in column (a) shows
Mileage being added via the API call add. In order to correctly
perform the transformation, Mileage now needs to be added to the
Cloud Data Table MileageRecordTable. This becomes a two step
process. Step 1 is to add a new row to the Cloud Data Table, and
step two is to assign the value of Mileage to that row. This is shown
in column (b) lines 26-27.

Injected Function Transformations: We used Injected Func-
tion Transformations when some API functionality in Number
Collection cannot be replicated using APIs from Cloud Data
Table. In order to transform such missing APIs, CLOUDIFYER in-
serts Injected Functions that provide the same functionality. Since
touchdevelop does not allow Cloud Data Tables to be passed to

functions, but instead must be used as a global variable, CLOUDIFYER

cannot create generic functions to replicate the API functionality.
Instead, it must inject a function for each Cloud Data Table that
has been created as a result of a refactoring. We developed a tem-
plate for each Injected Function Transformation. These templates
have “holes” and CLOUDIFYER then fills up these “holes” with the
relevant table name and column name. Thus CLOUDIFYER generates
these Injected Functions fully automatically.

One example of an Injected Function Transformation is shown
in Fig 2 (a) on lines 32-33. The function DisplayAvgMileage
calculates the average value of all contents of MileageRecord, and
then displays it. Once CLOUDIFYER refactors the program to use a
Cloud Data Table to store the data, there is no longer an API call
that will calculate the average value of all contents of a Cloud Data
Table. Instead, CLOUDIFYER must introduce the injected function
MileageRecordTable avg (see Fig. 2 (b) lines 36-45) that will
compute the average of all the values in the MileageRecordTable.
Now the API call in DisplayAvgMileage is transformed to call this
avg injected function instead, as seen in Fig. 2 (b), line 32.

Another example of an Injected Function Transformation is
shown in Fig 3. Column (a) shows the template for the function that
calculates the maximum value of a Cloud Data Table. Column (b)
shows the same function once it has been injected in the Mileage
Tracker app.
Concurrency: Since multiple users can access the cloud data at
the same time and perform updates concurrently, one needs to
worry about the atomicity of compound operations in our Injected
Functions. However, touchdevelop guarantees atomicity at the
function level, thus our Injected Functions will execute atomically.

4.3.1 Tool Limitations
The current version of CLOUDIFYER does not support the injected
function transformation needed to transform the API call add many.
We believe that this function could be implemented but it remains
as future work.

So far, we implemented CLOUDIFYER only for Number Collections.
In order to add other types of collections, we would need to write
new injected functions in order to provide additional functional-
ity. For example, in order to support the String Collection, we

1 d a t a Mi leageRecord : Number C o l l e c t i o n
2
3
4
5 p r i v a t e a c t i o n ShowMileageGraph ()
6 / / Shows a graph of t h e m i l e a g e r e c o r d on t h e e x e c u t i o n w a l l .
7 wal l−>c l e a r
8 MileageRecord−>p o s t t o w a l l
9 wal l−>prompt (" C l i c k \ " Ok \ " t o c o n t i n u e . . . ")

10
11 . . .
12
13 p r i v a t e a c t i o n C l e a r M i l e a g e R e c o r d ()
14 / / Th i s a c t i o n c l e a r s t h e m i l e a g e r e c o r d .
15 wal l−>c l e a r
16 i f wal l−>ask b o o l e a n (" Warning " , " Are you s u r e you want . . .
17 t o c l e a r . . . ")−> e q u a l s (t r u e) t h e n
18 Mi leageRecord := c o l l e c t i o n s −>c r e a t e number c o l l e c t i o n
19 e l s e do n o t h i n g
20
21 . . .
22
23 p r i v a t e a c t i o n AddMileageToRecord (
24 Mi leage : Number)
25 do
26 MileageRecord−>add (Mi leage)
27
28
29 . . .
30
31 p r i v a t e a c t i o n Disp layAvgMi leage ()
32 v a r avgMi leage := MileageRecord−>avg
33 avgMileage−>p o s t t o w a l l
34
35
36
37
38
39
40
41
42
43
44
45
46
47 . . .

(a) before

1 c l o u d t a b l e Mi l eageReco rdTab le
2 columns
3 MileageRecordColumn : Number
4
5 p r i v a t e a c t i o n ShowMileageGraph ()
6 / / Shows a graph of t h e m i l e a g e r e c o r d on t h e e x e c u t i o n w a l l .
7 wal l−>c l e a r
8 Mi l eageReco rdTab le t a b l e−>p o s t t o w a l l
9 wal l−>prompt (" C l i c k \ " Ok \ " t o c o n t i n u e . . . ")

10
11 . . .
12
13 p r i v a t e a c t i o n C l e a r M i l e a g e R e c o r d ()
14 / / Th i s a c t i o n c l e a r s t h e m i l e a g e r e c o r d .
15 wal l−>c l e a r
16 i f wal l−>ask b o o l e a n (" Warning " , " Are you sureâĂ ę ")
17 −>e q u a l s (t r u e) t h e n
18 Mi l eageReco rdTab le t a b l e −>c l e a r
19 e l s e
20
21 . . .
22
23 p r i v a t e a c t i o n AddMileageToRecord (
24 Mi leage : Number)
25 do
26 Mi l eageReco rdTab le t a b l e −>add row
27 −>MileageRecordColumn := Mi leage
28
29 . . .
30
31 p r i v a t e a c t i o n Disp layAvgMi leage ()
32 v a r avgMi leage := Mi lageRecordTab le avg
33 avgMileage−>p o s t t o w a l l
34
35
36 p r i v a t e a c t i o n Mi lageRecordTab le avg ()
37 r e t u r n s (
38 avg : Number)
39 do
40 v a r sum := 0
41 f o r each c t i n Mi l eageReco rdTab le t a b l e
42 where t r u e
43 do
44 sum := sum + c t−>MileageRecordColumn
45 avg := sum / Mi l eageReco rdTab le t a b l e −>c o u n t
46
47 . . .

(b) after

Figure 2. Relevant code from Mileage Tracker app. The left-hand side shows the original app, whereas the right-hand side shows the
refactored code. The modified code is underlined, and the avg is a newly injected function.

1 p r i v a t e sync a c t i o n $TABLENAME max ()
2 r e t u r n s (
3 max : Number)
4 do
5 max := $TABLENAME −> row a t (0) −> $COLUMNAME
6 f o r each c t i n $TABLENAME
7 where t r u e
8 do
9 i f c t −> $COLUMNAME > max t h e n

10 max := c t −> $COLUMNAME
11 e l s e do n o t h i n g

(a) Template Function

1 p r i v a t e a c t i o n Mi l eageReco rdTab le max ()
2 r e t u r n s (
3 max : Number)
4 do
5 max := Mi l eageReco rdTab le t a b l e −> row a t (0) −> MileageRecordColumn
6 f o r each c t i n Mi l eageReco rdTab le t a b l e
7 where t r u e
8 do
9 i f c t −> MileageRecordColumn > max t h e n

10 max := c t −> MileageRecordColumn
11 e l s e do n o t h i n g

(b) Injected Function

Figure 3. Template showing the injected function max. The left hand-side shows the template with “holes”, whereas the right-hand side shows
the function instantiated to use the MileageRecordTable.

would need to write an equivalent injected function for the join API
method which concatenates the entire collection into one string.

4.3.2 Implementation
CLOUDIFYER refactors touchdevelop scripts in place. First, CLOUD-
IFYER retrieves the source of the target app as an Abstract Syntax
Tree (AST) stored in JSON format from the touchdevelop script
bazaar. It then transforms the AST as needed. Once all the transfor-
mations are performed, CLOUDIFYER completes the refactoring by
saving the new AST for the target app.

5. EVALUATION
To determine if CLOUDIFYER is useful we ask the following research
questions.
Q1: APPLICABILITY: How applicable is the refactoring?
Q2: EFFORT: How much effort is saved by CLOUDIFYER when
refactoring?
Q3: ACCURACY: How accurate is CLOUDIFYER when performing
a refactoring?

5.1 Methodology
To create a corpus, we wrote queries against a database of all publicly
available scripts in the touchdevelop script bazaar. We wanted
to collect popular and mature scripts. Thus, our query returned
top scripts (based on the number of times that each script was
executed) that contained a Number Collection. We retained the top
123 scripts.

Table 3 provides details about our corpus. We report the size in
non-blank source lines of code (SLOC) and complexity in number of
functions. We also report the number of times the apps were run by
the touchdevelop community, as well as the number of installations.
Notice that a user can run an app without installing it in the user
profile; this feature allows a touchdevelop user to try out an app
before installing it.

Table 3 Corpus Characteristics

Average Max Std Dev Total
SLOC 403 2,526 483 47,185
Functions 21 121 26 2,502
App Runs 46 750 127 5,350
App Installations 5 125 18 635

Table 4 shows the total usage of the Number Collection APIs
in our corpus. For each API method we report (i) the total number
of call sites in our corpus, and (ii) the percentage of call sites among
the number of Number Collection API calls.

We ran the refactoring in batch mode. Steps 1 and 4 of our
process require domain knowledge. For Step 1, we refactored
all the Number Collections in our corpus instead of trying to
identify which data makes sense to be moved to the cloud. For
Step 4, we used the same policy that the app currently uses for
data initialization, as changing that would involve making design
decisions for each app. As far as the data session, we used the default
session provided by touchdevelop, the “just me session.”

In order to determine the applicability of CLOUDIFYER, we report
the number of scripts that our tool was able to refactor successfully,
as well as the number of each kind of transformations performed
inside a refactoring.

In order to determine the effort saved by using this refactoring
tool we record the number of seconds each refactoring took.

Table 4 Usage of Number Collection API reported in number of
call sites

API Name # Call Sites % of total Number Collection
API Call Sites

At 1010 39.25
Set At 632 24.56
Add 532 20.68
Count 109 4.24
Contains 107 4.16
Clear 84 3.26
Remove At 53 2.06
Sum 12 0.47
Avg 10 0.39
Sort 8 0.31
Min 4 0.16
Post To Wall 4 0.16
Reverse 4 0.16
Max 3 0.12
Random 1 0.04

In order to validate the accuracy of CLOUDIFYER, we randomly
chose 20 scripts from the corpus of 123 refactored scripts. We ran the
scripts and exercised the features for three minutes before and after
each refactoring to ensure that the refactorings did not change the
scripts’ runtime behavior. Indeed, we did not observe any runtime
differences before and after the refactoring.

In addition to running these 20 scripts we also carefully inspected
the refactored code. We counted transformations that CLOUDIFYER

(i) applied correctly, (ii) applied incorrectly, and (iii) missed. The
first two authors manually refactored these same 20 scripts, and
created a set of transformations for these refactorings. We define
this set of transformations that an expert would apply as our gold
standard. For each transformation that CLOUDIFYER applied, we
manually compared the result of the automated transformation with
the gold standard to determine if that transformation had been ap-
plied correctly. We define a TruePositive as a transformation that
CLOUDIFYER identified and applied correctly. We define FalsePosi-
tive as a transformation that CLOUDIFYER applies to the code, but it
is not part of the gold standard. In other words, CLOUDIFYER trans-
formed code that should not have been transformed. We define a
FalseNegative as a transformation that CLOUDIFYER did not apply,
but it is in the gold standard. In other words, CLOUDIFYER missed
applying a needed transformation.

Using these metrics we calculate precision and recall for CLOUD-
IFYER, using the standard definitions:

precision =
|TruePositive|

|TruePositive|+ |FalsePositive|

recall =
|TruePositive|

|TruePositive|+ |FalseNegative|

5.2 Results
Next we present the results for each of the three research questions.

Applicability: Table 5 shows the results for running CLOUD-
IFYER on 123 scripts. Out of the 123 scripts that CLOUDIFYER at-
tempted to refactor, 116 (94%) met the preconditions for the refac-
toring.

Only 7 scripts were unable to be refactored. Out of these, 4
scripts did not meet precondition (P1) (the Number Collection
was passed as an argument to a function), and 1 did not meet
precondition (P2) (Number Collection was assigned to a local
variable). The remaining 2 scripts exposed a limitation of the

current implementation of CLOUDIFYER (they were using a currently
unsupported function, add many). Thus, we think that our refactoring
is widely applicable to touchdevelop scripts that contain the Number
Collection data type.

Table 5 Total Scripts Refactored

Total Scripts 123
Number Successfully Refactored 116
Failed Precondition (P1) 4
Failed Precondition (P2) 1
Tool Limitations 2

Effort: Table 6 shows the number of transformations performed
per each refactoring. The first three rows show the type of these
transformations (i.e., direct, indirect, and injected function). The
fourth row shows the total for all types of transformations, while the
last row shows the running time for each refactoring.

The first column shows the average per script, while the last
column shows the total for all the scripts. Each script had, on
average, 24 transformations applied in 3 seconds. Given that the
touchdevelop editing experience is optimized for small screens on
touch devices, our refactoring tool saves significant effort.

Moreover, most of these transformations are non-trivial. Figure 4
shows the percentage of each kind of transformation applied. By far
the most common transformation kind is Indirect Transformation,
which involve mapping one API method call to a sequence of one or
more API method calls that do not share a common name with the
original method. Thus, we believe that automation saves significant
effort.

Table 6 Refactorings Applied Per Script
Avg Max Std Dev Total

Refactorings 1.84 8 1.38 211
Direct Trans 2.22 30 4.45 249
Indirect Trans 19.88 466 56.62 2227
Injected Function 2.20 30 5.01 246
Total Trans 24.30 466 56.56 2722
Time [sec] 2.64 27 5.18 296

Accuracy:
By manually checking refactorings applied in 20 scripts, we

found CLOUDIFYER’s precision to be 100% and its recall 94%. This
means that all the transformations that CLOUDIFYER applied are
correct. However, CLOUDIFYER missed 8 potential transformations
out 145 transformations that it should have applied. We identified
the root cause in our current implementation, and we expect a future
version will fix this.

5.3 Threats to validity
Construct Validity: Do our metrics indeed measure the advan-
tages of using CLOUDIFYER? Can we measure development effort
by simply counting the time and number of transformations per
refactoring? Ideally, we would have performed an experiment with
real touchdevelop developers and observe them while refactoring.
However, given the cutting edge nature of the Cloud Data Types,
we could not find such developers. Thus, we chose to use indirect
metrics, as it is commonly done in the literature [14, 31]. Second,
are we sure that the performed refactorings are accurate? Ideally,
we should have run tests before and after each refactoring. However,
very few scripts in touchdevelop have any tests at all. In order to
mitigate this we manually inspected a random set of 20 apps and

12%	

10%	

78%	

Custom	
 Func1on	
 Direct	
 Indirect	

Figure 4. Transformations by Percentage

exercised their functionality to determine that the runtime behavior
did not change.

Internal Validity: How did we mitigate bias during manual
inspection? We randomly sampled from the set of our corpus,
until we had sampled from a variety of app domains. Also, we
carefully constructed the set of transformations in the gold standard
before we applied CLOUDIFYER. The authors are all experts on the
touchdevelop platform.

Also, the corpus that we used in the evaluation predates the
introduction of Cloud Data Types, and thus the developers were
unaware of our later study and could not bias their code to help
CLOUDIFYER.

External Validity: Do our results generalize? For our corpus,
we used 123 of the most commonly run scripts, but we put no
restrictions on the type of the scripts. Our corpus includes scripts
from various domains: entertainment, sports, games, education,
productivity, etc. Moreover, the apps in our corpus are developed
by 83 authors from a diverse end-user community. We do not
foresee any reasons why our results would not generalize to other
touchdevelop apps. Currently there is no widely accepted standard
for cloud data types. In order for our results to generalize, cloud
storage providers will first need to agree on Cloud Data Storage
standards.

Reliability: Is our evaluation reliable? The apps that we used to
evaluate our tool are all available on the touchdevelop bazaar, and
CLOUDIFYER is published on the touchdevelop website. All these
URLs are available on our webpage:
http://cope.eecs.oregonstate.edu/cloudifier

6. DISCUSSION
There are two reasons why touchdevelop is well suited for refactor-
ing to the cloud. The first is that cloud types in touchdevelop have
well-defined but constrained semantics which includes the eventual
consistency model as described in section 2.1. The second is that
touchdevelop does not allow Number Collection data objects to
be aliased.

http://cope.eecs.oregonstate.edu/cloudifier

In order to generalize our results beyond touchdevelop, one
must deal with the problem of aliasing. This is a problem when
the object that is being moved is referenced by another alias in the
code. Consider a local object that one wishes to convert into a cloud
data type. If there are aliases to the local reference, any subsequent
method calls via that alias will cause the application to crash, unless
one finds all aliases and changes their data type as well. The reason
this is not a concern for our tool is that touchdevelop only allows
cloud data types to be global objects, therefore ensuring there are
no aliases to the object that was moved to the cloud.

In order to deal with these issues in environments that allow
aliases (e.g., in Java), researchers [?] have been forced to implement
distributed shared memory via a combination of code transforma-
tion/generation.

7. RELATED WORK
We group the related work in the following categories: (i) cloud-
related refactorings, (ii) multi-user apps, and (iii) tools for the
end-user development community.

Refactoring and the Cloud: There is a lot of research on the
generic topic of refactoring. While the original research was using
refactoring to improve the design of existing programs, the more
recent work used refactoring techniques to retrofit concurrency [10,
32], functional features [14], etc. As far as we know, we present
the first automated tool to introduce mobile cloud computing via an
automated refactoring tool.

The closest research to our current work is by Kwon and
Tilevich [18] who proposed Cloud Refactoring, a tool to refactor
methods of an enterprise application system into services that can
be ported to the cloud. Their tool also determines if a method is a
good candidate for refactoring using static and dynamic analysis.
However, even though their tool automatically refactors methods
into services, the programmer must still move them to the cloud
manually. Our tool, CLOUDIFYER, performs the refactoring fully
automatically, including moving data to the cloud.

Strauch et al. [27] describe a methodology for refactoring appli-
cations to move local data to cloud data. They propose several cloud
data patterns, and describe migration scenarios for these patterns.
Although this work provides a methodology at a high level, the
application of the refactoring is completely manual and left up to
the programmer. Ling et al. [21] describe a systematic refactoring
approach using category theory to formally define an approach to
convert Object Oriented systems into Service-Oriented Architecture
systems. Our work is different from these in that we provide a tool
to perform the refactoring in an automated manner.

Researchers have used many approaches to harness the power of
the cloud. One of the more common uses of the mobile cloud is to
offload computing in order to make apps more energy efficient and
thereby preserve battery life, such as Spectra [11], Slingshot [28],
and MAUI [9]. Kwon and Tilevich [17] proposed an approach to
offload computation to the cloud to save battery life that is tolerant
to network outages or unavailability.

CloudCone [6] also attempts to harness the power of mobile
cloud computing, but their approach is significantly different then
ours in that they create clones on the cloud, and then move the
execution of the application as well as it’s state between the cloud
and the device.

Researchers [2, 25] have also used refactoring techniques to
migrate from a version of the library to another version. Balaban
et al. [2] propose refactorings that automatically replace obsolete
library classes with their newer counterparts. Component devel-
opers have to provide mappings between legacy classes and their
replacements, and an analysis based on type constraints determines
where the replacement can be done. Nguyen et al. [25] designed

a technique to identify API changes automatically. Their analysis
compares two library versions and extracts knowledge about how
the updated client code has migrated to the newer version of the
API. Since this line of work is investigating API migration between
two versions of the same class, the changes are less dramatic than in
the case of migrating between a one-dimensional data type (Number
Collection) and a two-dimensional data type (Cloud Data Table).
Such a dramatic API change requires custom program transforma-
tions, and cannot be specified with a generic rule system.

Multi-user apps: Many have studied multi-user apps in the fol-
lowing domains: collaboration [22, 34], gaming [19], Geospatial
Applications [12] (e.g., Google earth), information sharing [24], and
music [26]. This research focuses on how multi-user technologies
impact human interactions. In contrast, we are focused on the tech-
nical challenges of refactoring from single to multi-user apps.

End-user Development community: Lewis et al. [20] describe the
need of End User Programming tools to make End User Program-
ming more acceptable.

touchdevelop is a programming platform developed by Mi-
crosoft Research that allows hobbyist, novice programmers and
end users to program on their phone for their phone. There are other
programming environments that are targeted to a similar audience,
including: App Inventor [33], Scratch [23], Alice [8], and Green-
foot [16]. Our recent work [1] provides refactoring tools for users
of Excel. However, our current paper is the first paper to engage the
mobile end-user in a refactoring workflow.

8. CONCLUSION
Mobile cloud computing can be harnessed to enable rich access
to data. In this paper we presented a formative study to convert
four apps to use the touchdevelop cloud data types. Based on these
lessons, we designed, implemented, and evaluated a tool, CLOUDI-
FYER, to refactor local data types into cloud data types. Our empir-
ical evaluation on 123 real apps, shows that the tool is applicable,
relevant, and saves human effort. Using our refactoring tool in com-
bination with a well designed, powerful end-user programming
platform (touchdevelop) can enable even novice programmers to
take advantage of the power of the cloud.

9. ACKNOWLEDGEMENTS
We would like to thank Caius Brindescu, Mihai Codoban, Sergii
Shmarkatiuk, Alexandru Gyori, Semih Okur, Yu Lin, Cosmin Radoi,
Eli Tilevich, and the anonymous reviewers for feedback on earlier
drafts of this paper. This research is partly funded through NSF CCF-
1213091 and CCF-1219027 grants, a SEIF award from Microsoft,
and a gift grant from Intel.

10. REFERENCES
[] Refactoring to cloud data. March ’14, http://cope.eecs.

oregonstate.edu/cloudifier/.
[1] S. Badame and D. Dig. Refactoring meets spreadsheet formulas. In

28th IEEE International Conference on Software Maintenance (ICSM),
pages 399–409, 2012.

[2] I. Balaban, F. Tip, and R. M. Fuhrer. Refactoring support for class
library migration. In ACM International Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA), pages
265–279, 2005.

[3] E. A. Brewer. Towards robust distributed systems (abstract). In
19th ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC), pages 7–, 2000.

[4] S. Burckhardt, M. Fähndrich, D. Leijen, and M. Sagiv. Eventually
Consistent Transactions. In European Symposium on Programming

http://cope.eecs.oregonstate.edu/cloudifier/
http://cope.eecs.oregonstate.edu/cloudifier/

(ESOP), (extended version available as Microsoft Tech Report MSR-
TR-2011-117), LNCS, volume 7211, pages 64–83, 2012.

[5] S. Burckhardt, M. Fähndrich, D. Leijen, and B. P. Wood. Cloud types
for eventual consistency. In European Conference on Object-Oriented
Programming (ECOOP), pages 283–307. 2012.

[6] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud:
elastic execution between mobile device and cloud. In 6th conference
on Computer systems (EuroSys), pages 301–314. ACM, 2011.

[7] J. P. Cohn. Citizen science: Can volunteers do real research? Bio-
Science, 58(3):192–197, 2008.

[8] S. Cooper. The design of alice. ACM Transactions on Computing
Education (TOCE), 10(4):15, 2010.

[9] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. Maui: making smartphones last longer
with code offload. In 8th international conference on Mobile systems,
applications, and services (MobiSys), pages 49–62. ACM, 2010.

[10] D. Dig, J. Marrero, and M. D. Ernst. Refactoring sequential java
code for concurrency via concurrent libraries. In 31st International
Conference on Software Engineering (ICSE), pages 397–407. IEEE
Computer Society, 2009.

[11] J. Flinn, S. Park, and M. Satyanarayanan. Balancing performance,
energy, and quality in pervasive computing. In 22nd International
Conference on Distributed Computing Systems (ICDCS), pages 217–
226. IEEE, 2002.

[12] C. Forlines, A. Esenther, C. Shen, D. Wigdor, and K. Ryall. Multi-user,
multi-display interaction with a single-user, single-display geospatial
application. In 19th Annual ACM Symposium on User Interface
Software and Technology (UIST), pages 273–276. ACM, 2006.

[13] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News,
33:51–59, June 2002.

[14] A. Gyori, L. Franklin, D. Dig, and J. Lahoda. Crossing the gap from
imperative to functional programming through refactoring. In 9th
joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering
(ESEC/FSE), pages 543–553, 2013.

[15] A. Khan, M. Othman, S. Madani, and S. Khan. A survey of mobile
cloud computing application models.

[16] M. Kölling. The greenfoot programming environment. ACM Transac-
tions on Computing Education (TOCE), 10(4):14, 2010.

[17] Y.-W. Kwon and E. Tilevich. Energy-efficient and fault-tolerant
distributed mobile execution. In IEEE 32nd International Conference
on Distributed Computing Systems (ICDCS), pages 586–595. IEEE,
2012.

[18] Y.-W. Kwon and E. Tilevich. Cloud refactoring: automated transitioning
to cloud-based services. Automated Software Engineering, pages 1–28,
2013.

[19] K. Leichtenstern and E. André. Studying multi-user settings for per-
vasive games. In 11th International Conference on Human-Computer
Interaction with Mobile Devices and Services (MobileHCI), pages
25:1–25:10. ACM, 2009.

[20] G. Lewis, D. Smith, L. Bass, and B. Myers. Report of the workshop
on software engineering foundations for end-user programming. ACM
SIGSOFT Software Engineering Notes, 34(5):51–54, 2009.

[21] H. Ling, X. Zhou, and Y. Zheng. Refactoring from object-oriented
systems to service-oriented systems: A categorical approach. In

International Conference on Service Sciences (ICSS), pages 214–218.
IEEE, 2010.

[22] R. Lopez-Gulliver, H. Tochigi, T. Sato, M. Suzuki, and N. Hagita.
Senseweb: Collaborative image classification in a multi-user interaction
environment. In 12th Annual ACM International Conference on
Multimedia (MM), pages 456–459. ACM, 2004.

[23] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond. The
scratch programming language and environment. ACM Transactions
on Computing Education (TOCE), 10(4):16, 2010.

[24] M. A. Nacenta, M. R. Jakobsen, R. Dautriche, U. Hinrichs, M. Dörk,
J. Haber, and S. Carpendale. The lunchtable: A multi-user, multi-
display system for information sharing in casual group interactions. In
2012 International Symposium on Pervasive Displays (PerDis), pages
18:1–18:6. ACM, 2012.

[25] H. A. Nguyen, T. T. Nguyen, G. Wilson, Jr., A. T. Nguyen, M. Kim, and
T. N. Nguyen. A graph-based approach to api usage adaptation. In ACM
International Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA), pages 302–321. ACM, 2010.

[26] H. Sørensen and J. Kjeldskov. The interaction space of a multi-device,
multi-user music experience. In 7th Nordic Conference on Human-
Computer Interaction: Making Sense Through Design (NordiCHI),
pages 504–513. ACM, 2012.

[27] S. Strauch, V. Andrikopoulos, and T. Bachmann. Migrating application
data to the cloud using cloud data. In e 3rd International Conference
on Cloud Computing and Service Science, (CLOSER), pages 36–46.
SciTePress, 2013.

[28] Y.-Y. Su and J. Flinn. Slingshot: deploying stateful services in
wireless hotspots. In 3rd international conference on Mobile systems,
applications, and services (MobiSys), pages 79–92. ACM, 2005.

[29] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and
C. Hauser. Managing update conflicts in bayou, a weakly connected
replicated storage system. SIGOPS Oper. Syst. Rev., 29:172–182,
December 1995. ISSN 0163-5980.

[] E. Tilevich and Y. Smaragdakis. J-orchestra: Enhancing java programs
with distribution capabilities. ACM Trans. Softw. Eng. Methodol., 19
(1):1:1–1:40, Aug. 2009. ISSN 1049-331X.

[30] N. Tillmann, M. Moskal, J. de Halleux, and M. Fahndrich. Touchde-
velop: Programming cloud-connected mobile devices via touchscreen.
In 10th SIGPLAN Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (ONWARD), pages 49–60.
ACM, 2011. ISBN 978-1-4503-0941-7.

[31] J. Wloka, M. Sridharan, and F. Tip. Refactoring for reentrancy. In
9th joint meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/SIGSOFT FSE), pages 173–182, 2009.

[32] J. Wloka, M. Sridharan, and F. Tip. Refactoring for reentrancy. In 7th
joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering
(ESEC/FSE), pages 173–182. ACM, 2009.

[33] D. Wolber. App inventor and real-world motivation. In 42Nd ACM
Technical Symposium on Computer Science Education (SIGCSE), pages
601–606. ACM, 2011.

[34] N. Yuill and Y. Rogers. Mechanisms for collaboration: A design and
evaluation framework for multi-user interfaces. ACM Trans. Comput.-
Hum. Interact., 19(1):1:1–1:25, May 2012. ISSN 1073-0516.

	INTRODUCTION
	BACKGROUND ON TOUCHDEVELOP AND CLOUD DATA TYPES
	Consistency Model
	TouchDevelop plug-ins

	FORMATIVE STUDY
	AUTOMATED REFACTORING
	Workflow
	Preconditions
	Transformations
	Tool Limitations
	Implementation

	EVALUATION
	Methodology
	Results
	Threats to validity

	DISCUSSION
	RELATED WORK
	CONCLUSION
	ACKNOWLEDGEMENTS

