
Programming with Triggers

Michał Moskal
European Microsoft Innovation Center

Aachen, Germany
University of Wrocław

Wrocław, Poland
michal.moskal@microsoft.com

ABSTRACT
We give a case study for a Satisfiability Modulo Theories
(SMT) solver usage in functional verification of a real world
operating system. In particular, we present a view of the
E-matching pattern annotations on quantified formulas as
a kind of logic programming language, used to encode se-
mantics of the programming language undergoing verifica-
tion. We postulate a few encoding patterns to be benchmark
problems for a possible E-matching alternative. We also de-
scribe features required from the SMT solver in deductive
software verification scenarios.

Categories and Subject Descriptors
I.2.3 [Artificial intelligence]: Deduction and Theorem Prov-
ing—Logic programming ; F.3.1 [Logics and meanings of
programs]: Specifying and Verifying and Reasoning about
Programs—Mechanical verification

Keywords
SMT, axiomatizations, E-matching, triggers, program veri-
fication

1. E-MATCHING
FOR THEORY BUILDING

Satisfiability Modulo Theories (SMT) solvers decide satis-
fiability of first-order formulas in the presence of background
theories (like integer or bit-vector arithmetic, arrays, etc.).
Verification of hardware and software is a major application
area of SMT solvers. This paper focuses on usage patterns
of SMT solvers in software verification scenarios. In par-
ticular, we present a case study of applying VCC [5]1, a
deductive verifier for C, powered by the Z3 [9] SMT solver,

1VCC, including SMT-support tools described later in the
paper, is available for academic research, with source code,
at http://vcc.codeplex.com/.

To appear in proceedings of SMT Workshop 2009.

in a large operating system verification project (more in Sec-
tion 1.2). VCC takes annotated C functions as input, and
turns them, with the help of Boogie [1], into verification con-
ditions (VCs). Validity of a VC implies (partial, as we do
not check for termination) correctness of a program. There-
fore, if a model for a negation of a VC can be constructed,
it points to a possible problem in the function, while unsat-
isfiability of the negation of a VC implies correctness of the
verified function.

Each verification tool depends on a verification methodol-
ogy, dictating the specification language and commonly used
specification idioms, as well as the particular modelling of
the programming language semantics to be used. Therefore,
from a SMT point of view, verification conditions should
be evaluated modulo a theory describing the verification
methodology. Clearly, no SMT solver supports such arbi-
trary theory out of the box. Moreover, given the complexity
of such a theory and the pace at which it tends to evolve
during development of a verification tool, it seems highly im-
practical to implement such theory inside of an SMT solver.
This is why usually [11, 13, 2, 16, 12] in deductive verifica-
tion a first-order axiomatization is developed, using theories
available in the SMT solver (like uninterpreted functions,
integer arithmetic, bit-vector arithmetic, and arrays). The
formulas presented as axioms to the SMT solver should be
understood as theorems in the model of the programming
language semantics and verification methodology.

A verification methodology axiomatization consists mostly
of universally quantified formulas. SMT solvers usually [10,
9, 14, 20] use instantiation techniques, controlled by user-
supplied or heuristically chosen triggers, which are most of-
ten subterms of the quantified formula. The triggers are used
to guide an E-matching procedure, which looks for ground
terms matching the triggers modulo the equality relation
considered in the current model (more in Section 2).

Quantifier instantiation with triggers is often viewed, es-
pecially in the SMT community, as an unreliable heuristic,
with no completeness guarantees, developed for a legacy sys-
tem (the SMT solver Simplify [10]) for solving first-order
problems. On the other hand, the deductive verification
community is generally not concerned with general first-
order problems, and instead wants a way of encoding the
semantics of the verified programming language. The views
of trigger/axiomatization engineering vary from “we need
even more control” to “let us pick some triggers and hope
the magical SMT solver will get it right”. This chapter
strongly supports the former camp: with unrestricted quan-
tifier instantiation verification problems very quickly become

http://vcc.codeplex.com/

intractable for Z3, and the experience with Z3’s superposi-
tion calculi was similar.

1.1 Related Work and Contributions
With the exception of Spec#’s treatment of comprehen-

sions [19], there has been not much publications about par-
ticulars of triggering. On the other hand several tools, in-
cluding ESC/Modula-3 [11], ESC/Java [13], Spec# [2], Ha-
voc [16], and Why [12] use these kinds of patterns. Only the
encoding of ESC/Java’s logic is described in some more de-
tail [23]. Overall it seems that there is not enough knowledge
exchange between the SMT and deductive verification com-
munities regarding these topics. We hope that this chapter
will partially bridge that gap, and help develop alternatives
to E-matching, by clarifying its present usage patterns.

We view the first-order logic, together with trigger anno-
tations, as a logic programming language used to encode the
semantics of the code being verified. This operational view
is illustrated by a number of encoding patterns:

• frame clauses (Section 2.2) being source of a large frac-
tion of quantified formulas in a typical VC

• versioning (Section 2.3), demonstrating the automatic
trigger selection employed in Simplify and Z3 to be too
restrictive

• stratified triggering (Section 2.4), showing the opposite
situation, with novel existential activation used to be
again more liberal

• and finally rather surprising behavior of a set theory
axiom (Section 2.5).

We also describe typical use cases of SMT in verification
(Section 3), including the particular timing and output re-
quirements placed on the SMT solver. Finally, we tackle the
topic of debugging and profiling axiomatizations (Section 4),
using tools we have built for this purpose.

The encoding patterns presented here are the most com-
plex among ones we have used in VCC. We thus postulate
them to be benchmark problems for a possible E-matching
alternative.

Several axiomatization patterns we present are heavily in-
fluenced by the Spec# program verifier, due to similarities
in treatment of ownership and framing. We note in the text
when this is the case.

1.2 Background: The Hypervisor Verification
and VCC

The Hypervisor verification project2 aims at full func-
tional verification of the kernel of Hyper-V, an industrial vir-
tualization platform, currently shipped with Microsoft Win-
dows Server 2008. It is essentially a small operating system,
with memory management, a scheduler, and essential device
drivers. It consists of about 100 000 lines of C code (exclud-
ing comments) and about 5 000 lines of assembly.

The ultimate goal of the project is a formal proof that
Hyper-V simulates the virtualized hardware for each of the
guest operating systems. There are however multiple in-
termediate goals, the first one being verification of memory

2It is part of the Verisoft XT verification project, supported
by BMBF under grant 01IS07008. The Verisoft’s Aviation
subproject, focusing on PikeOS embedded operating system
verification [3] also uses VCC.

safety in concurrent context. Even this first step relies on
establishing, e.g., functional correctness of red-black trees
and complex concurrency synchronization protocols.

The goal of the project is to verify the code that is shipped,
not to change it just to facilitate verification. This requires
handling C in its full “glory”, a restriction to a “safe subset”
is out of question. Moreover, the entire code-base should
be verified, including concurrency control primitives (e.g.,
spin locks), which are usually taken for granted by verifi-
cation methodologies. Finally, annotations are supposed to
be maintained by the regular development team once the
verification is complete. Since an average programmer is
usually not an expert in interactive theorem proving, auto-
matic methods should be used as much as practically possi-
ble. The project involves up to 20 people working, mostly
on specification of the Hyper-V, for three years, making it
one of the largest formal verification efforts ever attempted.

These conditions make for a fairly good case-study for
verification in the “real world”.

VCC [5] is a tool used for Hypervisor verification. It was
developed with the needs of Hypervisor verification project
in mind, but given the scope of that project we expect it to
be usable on wide spectrum of C programs. In particular,
the verification methodology [7], seems applicable to a wide
class of various concurrent algorithms.

VCC extends the C language with contracts in style of
JML [17] and Spec# [2]. Functions are equipped with pre-
and post-conditions while types (i.e., structures and unions)
are equipped with two-state invariants, which describe valid
states and possible changes of objects of those types. Con-
tracts are specified in a variant of the C programming lan-
guage consisting of side-effect free expressions, first-order
quantification, and lambda expressions.

The annotated C programs are translated, with help of
the Boogie verification condition generator [1] to formulas
understood by the Z3 [9] SMT solver. Even though Boogie
has multiple theorem prover back-ends (not even restricted
to first-order logic, e.g., there exists a back-end [4] for Is-
abelle/HOL), VCC currently focuses on the SMT back-end
and Z3 in particular.

Verification in VCC is function- and thread-modular: each
function is verified separately, as if executed by a single
thread, where actions of other threads are simulated at cer-
tain points.

First Order Manifesto. Verification of complex, func-
tional properties of programs has been, to date, mostly done
using interactive, higher-order provers. To leverage automa-
tion offered by modern SMT solvers, VCC restricts the spec-
ification language not to use any higher order or special-
ized logics. The specifications are expressed using first-
order predicates, possibly operating on ghost state, i.e., fields
and objects introduced only for the purpose of specification.
Ghost fields are used, e.g., to store a map-abstraction rep-
resenting all nodes of a red-black tree in the tree object, or
to capture concurrent protocols.

We have been able to specify and verify multiple recursive
data structures, as found in the Hyper-V code, some com-
plex synchronization primitives (spin locks, reader-writer
locks, rundowns, custom algorithms for message passing)
and specify a good deal of data structure invariants. We
currently do not face expressiveness problems with the first-
order specification language.

Annotation Language Flexibility. To facilitate the spec-
ification of complex functional properties, VCC supports
manipulation of ghost data types, including maps (from
pointers and integers to arbitrary types) as well as entire
states of execution, which can be captured and used to eval-
uate expressions in them. Additionally, new user-defined
ghost data types can be specified at the level of C, using
function symbols and axioms.

Foremost, however, VCC supports explicit triggers in user-
supplied quantified formulas. We found this ability invalu-
able in specification of recursive data structures (Section 2.4),
and helpful in a number of other situations. We intend to
survey common triggering styles in specifications, toward
the end of the project, to see if and how the trigger selec-
tion can be mechanized. Currently, however, we focus on
a handful of “specification idioms”, which are “recipes” de-
scribing how to specify a particular implementation artifact,
including triggers.

2. ENCODING PATTERNS
SMT solvers incrementally build a sequence of partial

models for the ground (i.e., quantifier-free) part of the in-
put formula. A term is active iff the current partial model
gives it an interpretation. Based on triggers attached to the
quantified formulas and the set of currently active terms, the
quantified formulas are instantiated. The resulting ground
instances are conjoined to the input formula, possibly lead-
ing to refinements of the model.

A trigger is a set of non-ground terms. The terms in a
trigger need to mention all variables that are quantified over.
A trigger is said to match in the partial model M , if there ex-
ists a substitution σ such that for each term t in the trigger,
σ(t) is active in M . For example, a trigger {f(g(x)), h(y)}
will match in a model where the term f(c) and h(e) are ac-
tive and c = g(d) for σ = [x := d, y := e]. Note that there
can be multiple triggers for a given quantified formula, each
consisting of one or more terms. For each trigger, for each
matching substitution, the formula will be instantiated (i.e.,
terms in a trigger are treated as conjunction, while differ-
ent triggers are treated as a disjunction). The exact time at
which the instance will be generated is determined heuristi-
cally. Experience with Z3, VCC and Spec# suggests eager
instantiation to be the most efficient. Quantifier instantia-
tion leads to refinements in the model, which give rise to new
matches, new instantiations, and so on. Following Boogie,
we list triggers in curly braces after the quantified variables
of a formula.

2.1 The Simple: Tuples and Inverse Functions
This simple example shows how triggering can make the

behavior of an SMT solver rather unpredictable. Let us
consider a typical axiomatization of a pair constructor and
selector functions:

∀x, y. {pair(x, y)} fst(pair(x, y)) = x ∧ snd(pair(x, y)) = y

In other words, whenever the term pair(t, s) becomes active,
the axiom will also activate (and give value to) the selector
functions. Thus, if an assumption like pair(0, a) = pair(1, a)
is present, the axiom will, through congruence closure, cause
0 = 1 to be assumed. On the other hand, should we se-
lect {fst(pair(x, y))} as the trigger, which would be natu-
ral if we thought of the axiom being the definition for the
fst(...) function, an assumption like the above alone would

not trigger the axiom. Only if the terms fst(pair(0, a)) and
fst(pair(1, a)) would happen to be active, possibly because
of some other proof obligations, would the axiom trigger
and cause inconsistency to be detected. This would gen-
erally cause unpredictable behavior of the SMT solver: a
proof of a particular assertion could be dependent on some
unrelated previous proofs. Therefore, the author of the ax-
iomatization needs to identify the cases where the existence
of an “interface” function like fst(...) is also used to derive
some properties of the objects it is applied to, in particular
distinguishing between different instances of such objects.

2.1.1 Extensible Records
Consider the tuple example again, but one where we do

not define the constructor function (or the definition axiom)
at all. Instead, whenever we need to construct a tuple object,
let us say 〈1, 2〉, we would introduce a new constant c, and
assume fst(c) = 1 ∧ snd(c) = 2. Since there is no mention
of the constructor function, new fields can be added freely,
assuming the cardinality of the type of c is big enough. For
example, VCC background axiomatization defines several
selector function on program states, including one for mem-
ory values (statemem) and one for status (ownership etc.,
statest). We then define helper functions to access different
“dimensions” of state. Finally, we subdivide the information
about ownership of a particular pointer even further, using
statusclosed and statusowner selector functions:

memory(S, p) ≡ rd(statemem(S), p)
status(S, p) ≡ rd(statest(S), p)
owner(S, p) ≡ statusowner(status(S, p))
closed(S, p) ≡ statusclosed(status(S, p))

The reason for such a two-stage encoding is performance.
For example, ordinary memory write putting value v at
pointer p is going to turn a state S0 into S1, where only
statemem is updated, while statest stays unchanged:

statemem(S1) = wr(statemem(S0), p, v) ∧
statest(S1) = statest(S0)

Subsequent reads from statest(S1) do not need to go through
any quantifier instantiation to be transformed into reads on
statest(S0). On the other hand, the ownership-related infor-
mation tends to be updated all at once, and therefore there
is no reason for separation of heaps. For example, closing an
object p and setting its owner to o is done with the following
assumption3:

statemem(S1) = statemem(S0) ∧
(∃s. statest(S1) = wr(statest(S0), p, s))
∧ owner(S1, p) = o ∧ closed(S1, p) ∧ ...

We postulate existence of a status of p such that the owner of
o is p and p is closed. Alternatively, instead of the existential
quantifier, one could say that the new state after update is
what it is:

statemem(S1) = statemem(S0)
∧ (statest(S1) = wr(statest(S0), p, status(S1, p)))
∧ owner(S1, p) = o ∧ closed(S1, p) ∧ ...

which might be trickier to understand, but is otherwise very
similar. Another example is pointers to ghost state, which

3 The ownership information also includes time stamps, ref-
erence counts, and so on, which tend to be updated all at
once, even if closedness and ownership do not.

we can draw freely from the set of integers, and thus they
can encode arbitrary amounts of information. In particu-
lar, pointers to certain objects encode versions of ownership
domains.

2.2 The Common: Framing in the Heap
Basically any reasoning in deductive verification builds

on top of heap updates and accesses. This suggests the
heap encoding to be crucial for performance. In fact the
time of reasoning about the heap is dominant in VCC prob-
lems. This section gives an overview of the heap encoding,
as used in VCC and Spec#, with some references to other
systems. The VCC heap4 is axiomatized using standard
select-of-store axioms:

∀H, p, v. rd(wr(H, p, v), p) = v
∀H, p, q, v. p 6= q ⇒ rd(wr(H, p, v), q) = rd(H, q)

The function wr(...) is used when a single heap location is
updated. On the other hand, upon procedure call several
locations, let us say a and b, need to be updated. This is
expressed by introducing a fresh variable H1 and connecting
it with the current heap, say H0, using a frame clause, like:

∀q. rd(H0, q) = rd(H1, q) ∨ q = a ∨ q = b

Spec# and VCC use ownership to organize objects in the
heap, in particular with respect to framing. Each object
has a distinguished field which stores the reference to the
current owner of the object. The ownership domain of an
object o is the set of objects from which o can be reached
by following zero or more ownership links. If a procedure
is allowed to write p, it can also write everything in the
ownership domain of p. Since the reachability relation, used
in the definition of the ownership domain, is not expressible
in first-order logic, we over-approximate the set of written
locations to include all objects not directly owned by the
current thread (denoted me). Therefore, a frame clause for
a procedure writing a and b in VCC would be:

∀q, f.H0[q, f] = H1[q, f]∨ q = a∨ q = b∨H0[q, owner] 6= me

where H[p, f] ≡ rd(H, field(p, f))5, and the function field(p,
f) gives the address of a field f in the object pointed to
by p. Consequentially, for almost every H[p, f] access we
will see, the term H[p, owner] being generated. Depending
on the methodology, there might be more such artifacts,
which together contribute a fair amount of complexity to
heap reasoning.

Chaining. VCC uses backward chaining on frame clauses,
i.e., they trigger on H1[q, f]. Any heap access at Hk will be
back-propagated to Hk−1, Hk−2 and so on. Alternatively
triggering on H0[q, f] would lead to forward chaining: ac-
cesses at the beginning of the function will be propagated
toward the end. VCC requires backward chaining. For ex-
ample let us consider a simplified version, of a verification

4The memory model designed for VCC [6] imposes a typed
object model on top of C flat memory. Thus, the heap ax-
iomatization is very similar to the one used for type-safe
languages.
5 We use the symbol ≡ to define a syntactic shortcut, which
is expanded before the SMT solver sees it. This has trigger-
ing behavior different from introducing a function symbol
and defining equivalence through an axiom. Boogie allows
for easy switching between those two styles of function def-
initions on per-function basis.

condition, saying that writing 7 to a field cnt of some object
preserves the invariant that all cnt fields are positive. Let
I(H) ≡ (∀q.H[q, cnt] > 0).

(I(H0) ∧ (∀q, f.H0[q, f] = H1[q, f] ∨ q = a) ∧
H1[a, cnt] = 7) ⇒ I(H1)

To prove validity of that formula, the SMT solver will skolem-
ize the universal quantifier from I(H1), generating an as-
sumption ¬(H1[q0, cnt] > 0). I(H0) will only be applied
on q0, when the term H0[q0, cnt] is activated, which cannot
happen, if the frame clause triggers only on H0[q, f].

Multiple Heaps. Some tools use multiple logical con-
stants to encode the heap. For example in ESC/Java the
split is done on per-field basis [23], while in Frama-C [21]
the heap is further split based on syntactic aliasing analy-
sis. This is clearly beneficial for the SMT solver, as no rea-
soning is necessary to infer that updates on different heaps
commute. However, in case of VCC or Spec#, the benefits
would be minimized because the frame clause of a procedure
potentially needs to simulate write effects on all the partial
heaps, as one does not know where objects from ownership
domains might be stored.

2.2.1 The Good Heap
The verification methodology usually involves some pro-

tocols on accessing the heap. For example, one might model
heap locations holding machine integers as mathematical,
unbounded integers, but make sure a value outside the ap-
propriate machine integer range is never stored in such a
location. However, an axiom like:

∀H, p. 0 ≤ rd(H, p) ≤ 232 − 1

introduces an inconsistency, as in principle one could in-
stantiate it with [H := wr(H0, q, 2

32), p := q]. However, the
point is that we are never going to create a heap like that.
Moreover, because of triggering, the SMT solver is never go-
ing to instantiate the axiom with such a heap, which makes
the unsoundness of such an axiom hard to detect. On the
other hand, we do not want to rely on triggering for sound-
ness, and therefore heaps obeying the verification methodol-
ogy protocols are distinguished from other heaps with help
of a predicate, let us call it good heap(H). It is assumed
for every “approved” heap, i.e., one introduced by the veri-
fication tool, and used as a precondition in axioms like the
range axiom above. We never supply a definition for such a
predicate, only axiomatize its consequences.

One can use several layers of such predicates (and e.g.,
Spec# and VCC do), depending on which of the system
invariants hold. For example, after a heap update we know
about integer ranges, but we do not know that invariants of
all objects are preserved, before we check the invariant of
the object just being updated.

2.3 The Liberal: Versioning
This section gives an example where the usual automatic

trigger selection heuristics (used in Simplify, Z3 and CVC3)
are too restrictive, and we need to introduce explicit triggers
to make it more liberal.

In VCC, in a particular heap, an object can be either open
or closed. In closed objects, only fields marked with the
volatile modifier can change. The set of objects owned by

an object is stored in a non-volatile field6, and consequently
the set of object in an ownership domain, as well as their
non-volatile fields, cannot change, as long as the root object
is closed. Therefore, if an object o is closed in each of a
sequence of consecutive heaps, we can infer that a value of
some field in the domain of o is the same in all of them. To
avoid quantifying over sequences of states we use versioning:
each object is equipped with a field carrying the version,
and when the object is closed, this field is assigned a value
encoding the values of all elements of the ownership domain.
We do not specify the encoding explicitly, just axiomatize
some of its properties.

Let domain(H, r) ≡ ver domain(H[r, version])7. There
are no additional axioms attached to the ver domain(...)
function. Its mere existence guarantees that the domain
is part of the version encoding (cf. Section 2.1.1). The fol-
lowing axiom states that the encoding of the version also
includes all non-volatile fields of objects in the domain:

∀H, p, q, f. {p ∈ domain(H, q), rd(H, field(p, f))}
¬ volatile(f) ∧ p ∈ domain(H, q) ⇒

rd(H, field(p, f)) = fetch(H[q, version], field(p, f))

Any value read from an object p known to reside in do-
main of q is considered to be a function of version of q
(fetch(...) is similar to ver domain(...) in that sense), and
hence if the version of q does not change, the value also does
not change8. The explicit triggers on the axiom above, will
cause it to be applied whenever a field of an object, known
to reside in a domain is accessed. However, should we allow
Simplify or Z3 to automatically choose the trigger, it would
go for fetch(rd(H, q), field(p, f)), as this is the only single-
term trigger possible. This is however fairly useless since
the only way to activate applications of fetch(...) is to apply
this very axiom. This is thus an example where automatic
trigger selection has not only performance implications, but
also makes the axiom outright useless.

2.3.1 Filtering Trigger
The fetch(...) axiom above, with the explicit trigger, will

be instantiated for volatile and non-volatile fields, and then
the instances for volatile fields will be discarded per the
implication precondition. To limit its applicability already
at the instantiation level, we introduce a function symbol
non volatile(...), assume it for non-volatile fields and then
add non volatile(f) to the trigger. If we use the function
symbol non volatile(f) in the bodies of quantified formu-
las only when it is already placed in the trigger, no new
instances of non volatile(...) will be created. Thus, the for-
mulas will trigger only for non-volatile fields, for which we
explicitly assumed the predicate. A similar pattern is used
to supply different definitions of certain functions for prim-
itive and non-primitive pointers.

If for some reason we want to avoid multi-triggers (for
example because Simplify does not handle them very ef-

6This can be overridden by an explicit annotation, but for
brevity we skip that possibility.
7VCC stores the version of the object at the address of the
object itself (i.e., we have field(p, version) = p; since pointers
in VCC include type information, no real field is actually
stored there), so listing an object in the frame clause really
means listing its version. This plays well with encoding of
frame clauses.
8Following Spec# we use a similar trick for frame axioms of
pure methods [8].

ficiently), one can use “the as trick” [23]: in addition to
P (x) = true, we would assume as P (x) = x, thus allow-
ing triggering on {h(as P (x))} instead of the multi-trigger
{h(x), P (x)}. We have not used it in VCC in this particular
place, but Section 2.4 uses similar trick in the definition of
the ∈′ predicate.

2.4 The Restrictive: Stratified Triggering
The following section demonstrates a case, where the au-

tomatic trigger selection will cause too many instantiations,
i.e., we will need to restrict triggering.

Consider the following formula, being part of a simplified
invariant of a doubly-linked list:

inv(H, l) ⇔ ...
∧ (∀p. p ∈ owns(H, l) ⇒ H[p, next] ∈ owns(H, l) ∧

H[p, prev] ∈ owns(H, l) ∧
H[p, data] 6= null)

The expression owns(H, l) refers to the set of objects owned
by l in the heap H. If the trigger would be p ∈ owns(H, l) we
would cause a matching loop: a term p0 ∈ owns(H, l) will
possibly activate the terms H[p0, prev] ∈ owns(H, l) and
H[p0, next] ∈ owns(H, l), each of which will in turn activate
two more terms, and so on. Even if we limit instantiation
depth to n, we still get 2n quantifier instances, and severe
restrictions on n are unrealistic (see Section 3). Instead
we split the formula into two recursive parts, triggering on
the consequent of the implication, and a non-recursive part
describing properties of a single list node:

inv(H, l) ⇔ ...
∧ (∀p. {H[p, next] ∈ owns(H, l)}

p ∈ owns(H, l) ⇒ H[p, next] ∈ owns(H, l))
∧ (∀p. {H[p, prev] ∈ owns(H, l)}

p ∈ owns(H, l) ⇒ H[p, prev] ∈ owns(H, l))
∧ (∀p. {p ∈ owns(H, l)}

p ∈ owns(H, l) ⇒ ψ(H, l, p))

where ψ(H, l, p) ≡ (H[p, data] 6= null). This way we have
removed the matching loop, but another problem remains.

For real trees and lists ψ is more complicated, and there-
fore we want to avoid ψ being instantiated too often. How-
ever, terms of the form p ∈ owns(H, l), occur commonly and
may have nothing to do with lists, e.g., might become active
due to instantiation of definition of set operations or frame
clauses. To address this problem, we introduce a function
as node(...), along with an axiom:

∀p. {as node(p)} as node(p) = p

making it an identity and define p ∈′ S ≡ as node(p) ∈ S.
So, by wrapping as node(...) around a term, we are essen-
tially putting a special marker on it that can be later used
in triggers. If we replace all occurrences of ∈ with ∈′ in
the invariant9, both in triggers and formula bodies, we end
up with much more restricted triggering behavior. The for-
mula will trigger only for pointers p for which as node(p)
was activated.

For example, the typical verification condition might look
like inv(H0, l) ∧ ∆(H0, H1) ⇒ inv(H1, l), stating that the

9VCC provides a definition of the ∈′ predicate, so the user
can choose to use ∈′ in invariants, and live with the conse-
quences.

invariant of l is preserved by the state transition between
heaps H0 and H1 (there might be intermediate heaps be-
tween them, but this is irrelevant here). When proving the
last conjunct of the invariant, the SMT solver tests satis-
fiability of a formula inv(H0, l) ∧ ∆(H0, H1) ∧ ¬(∀p. p ∈
owns(H, l) ⇒ ψ(H, l, p)). Assuming the bound variable p to
be skolemized into p0, the solver assumes p0 ∈′ owns(H1, l)
and ¬ψ(H1, l, p0). In particular, the term as node(p0) is ac-
tivated. Thus, when the solver infers p0 ∈ owns(H0, l), then
ψ(H0, l, p0) follows, hopefully conflicting with ¬ψ(H1, l, p0).

We have now limited the instantiations. In cases where the
limitations are over-restrictive, e.g., the user needs a lemma
ψ(H0, l, n) for a specific list node n, then the user needs
to introduce the marker as node(n), usually by adding an
explicit assertion of the form n ∈′ owns(H0, l).

Existential Activation. In the previous example, it is
possible that one needs to look one element forward in the
list, to prove that the invariant of an arbitrary element is
preserved, e.g., we might need ψ(H0, l, H1[p0, next]) in ad-
dition to ψ(H0, l, p0). However, since p0 is a fresh constant,
introduced by the SMT solver, the user cannot explicitly as-
sert H1[p0, next] ∈′ owns(H0, l), which would be required to
trigger it. Instead, the user can supply an annotation which
states what terms should be activated when the formula un-
dergoes skolemization:

(∀p. {p ∈ owns(H, l)}{ex act:H[p, next] ∈′ owns(H, l)}
p ∈ owns(H, l) ⇒ ψ(H, l, p))

This pattern was crucial in verification of recursive data
structures in VCC.

2.5 The Weird: Distributivity,
Neutral Elements and Friends

This section talks about rather surprising behavior of a
common set theory axiom. Similar axioms, causing similar
problems, include pointer arithmetic normalization (for ex-
ample, &(&p[i])[j] = &p[i+j]) and various distributivity
axioms (for integer arithmetic, bit-vector arithmetic or set
theory). The set theory example we are going to use is the
following axiom describing the relation between set union
and difference:

∀A,B,C. {(A \B) \ C} (A \B) \ C = A \ (B ∪ C)

Such an axiom may seem benign, but the number of appli-
cations resulting from a ground term (...((c\d0)\d1)...\dn)
is exponential with n (we will get all possible parentheza-
tions of the expression d0 ∪ ... ∪ dn, and also some of its
subexpressions). The number of instances can be reduced

to quadratic by introducing another function symbol \̂:

∀A,B. {A \B} A \B = A\̂B
∀A,B,C. {(A\̂B) \ C} (A\̂B) \ C = A\̂(B ∪ C)

Alternatively, we could trigger the original axiom on A\(B∪
C) However, should at some point the term c\(∅∪d) arise, a
matching loop would occur, provided the SMT solver would
know d = ∅ ∪ d, but not c = c \ ∅, for example, because of
axiom instantiation order or a missing axiom. The matching
loop would involve instantiations where B = ∅, C = d and
A is c, c \ ∅, (c \ ∅) \ ∅ and so on.

The morale here, is that one needs to be careful when sup-
pling such axioms that can be recursively applied, and make

sure they do not loop or trigger excessively often. Luck-
ily, such cases can be usually easily spotted when profiling
the axiomatization (i.e., examining SMT solver log files con-
taining list of instances produced during solver’s run on a
particular problem).

3. PERFORMANCE REQUIREMENTS ON
THE SMT SOLVER

An important aspect of verification tools that is often
overlooked is that they fail most of the time. This is inherent
in the process of developing specifications: one tries differ-
ent version of annotations (and possibly code) until the pro-
gram finally goes through the verifier. This usually involves
running the verifier every minute or so, after small changes
or additions in annotations. Thus, usually we have a large
number of unsuccessful runs of the verifier, and one success-
ful run at the end. Therefore, in terms of SMT, the time to
find a (probable) model is much more important than the
time to prove unsatisfiability. This is particularly interest-
ing, as it seems SMT with quantifiers currently lacks good
stop conditions, short of waiting for all the matching pos-
sibilities to be exhausted. This is more of practical, rather
then theoretical, problem because even if we were able to
express the axiomatization in a fragment of logic with finite
model property the size of formulas involved would likely
make the theoretically finite models gigantic.

From the interactive standpoint, it would be ideal to have
responsiveness in the range of a regular compiler, i.e., a cou-
ple of seconds. Experience shows that response times of over
a minute are discouraging (or worse), and response times of
over an hour definitely stop the development of annotations.
Incrementality could be possibly exploited: the verifier is run
several times with only slightly different versions of the VC.
VCC currently does it manually: the user specifies which
assertion they are interested in proving, and once they have
proven them one-by-one, they can run the full verification,
possibly on a build server (or multiple build servers).

As for the general scale of problems, the VCC background
axiomatization includes about 300 quantified formulas, al-
most all with explicit triggers, including 50 with multi-trig-
gers. While Hyper-V is structured into layers, most of its
types are visible in most of the functions. There are about
300 types with 1500 fields, which after translation yields
about 13000 axioms, half of them ground, consuming about
5 megabytes of SMT-format [22] file. Just the number of
triggers involved exposed a couple of problems in Z3 E-
matching indices. Since vast majority of Hyper-V functions
are small, the background description of types and their in-
variants dwarfs the size of the translation of the function
body itself. On the other hand, the function body is where
the complexity lies: verification times vary between few sec-
onds and hours, despite the fact that the background types
are the same.

The number of quantifier instances when verifying a func-
tion is usually in the range of tens of thousands. Moreover,
most of the axioms are never instantiated. However, inter-
actions between the ones that are needed are quite complex.
For example, we examined a proof of validity of a simple
function inserting an element into a singly-linked list. While
the example took less than 10 seconds to verify, the maximal
required matching depth, i.e., the depth of the causal DAG

for instances needed in the proof, was already 17. This func-
tion involved about 10 heap updates (most of which were
ghost updates of the map abstracting the list and methodol-
ogy bookkeeping). Thus, for every heap location accessed at
the end of the function, one would need to apply 10 axioms
to learn about the value of that location at the beginning of
the function. 10 out of 17 instances in the chain were actu-
ally application of frame clauses. On the other hand, this
chain also involved 6 different user defined formulas, coming
from the invariant of the list. We conclude from this that
any attempt at putting hard limits at instantiation depth
are misguided.

4. DEBUGGING AND PROFILING
AXIOMATIZATIONS

Analogously to ordinary programs, axiomatizations need
to be debugged when the verification tool gives invalid an-
swers and profiled when the tool takes too much time or
memory. An invalid answer can be either due to unsound-
ness, when the tool proclaims a buggy program to be correct,
or due to an incompleteness in the opposite case.

This section gives some insight on methods and tools im-
plemented in VCC to aid in debugging and profiling axiom-
atizations.

4.1 Soundness
It is possible to develop axiomatization, where each for-

mula presented to the SMT solver as an axiom is actually a
theorem, which is valid in a theory modelling the program-
ming language semantics. The theory should be a conserva-
tive extension built in a higher order logic proof assistant.
In case of VCC there are however some practical reasons be-
cause of which such an effort was not undertaken. The two
most important reasons are: a verification methodology in
flux, developed alongside the axiomatization and the need to
meet performance requirements on the behavior of Z3 with
the axiomatization, which required frequent updates and a
lot of experimentation. Analogous state of affairs persists in
other, similar verification/bug-checking efforts [11, 2, 16].

The quality assurance in VCC is thus largely based on
testing. As with most compilers, the size of the test suite
corpus by far exceeds the size of the source of the compiler.
The tests are both positive (i.e., benchmarks that are ex-
pected to verify) and negative (where a specific error is ex-
pected). The problem with negative benchmarks is that they
are usually synthetic: simple code snippets constructed to
show a specific verification error. The positive benchmarks
can be also synthetic, but additionally larger code snippets
are usually available showing somewhat more complicated
use cases, combining together several features.

To partially compensate for that, VCC uses a reachability
analysis [15], which checks if the SMT solver can find any un-
reachable program points (i.e., statements in the program,
which the SMT solver can prove will never be executed). An
unreachable program point, for the SMT solver, amounts
to proving false at that point. Therefore, the analysis es-
sentially reduces to testing several versions of the program,
with assert(false) statements placed just before joints of
the control flow graph. If the SMT solver finds such asser-
tion to be valid, the location is unreachable. Such a result
might point to code that is indeed unreachable (for example,
stemming from a defensive programming technique), how-

ever more often than not it points to an inconsistent function
preconditions or an inconsistent background axiomatization.
Such a test is definitely not a silver bullet10, in particular
it only detects immediate inconsistencies, not ones requiring
non-trivial actions from the user to reproduce, or giving too
strong guarantees about the programming language seman-
tics. Still, we found this analysis very valuable during VCC
development.

Soundness problems are thus usually discovered through
a failing test case. After initial efforts to minimize such
test case, if the cause of unsoundness is still unknown, it is
useful to know a small subset of axioms that are needed for
the problem to manifest. Such a subset can be extracted
from a full proof, if one can be produced by the SMT solver,
but also from the UNSAT core11. Additionally, if neither
of those options is available, one can just run smaller and
smaller subsets of axioms through the SMT solver, using
some automated procedure. On the other hand, we have
not found the exact proof to be very useful, mainly due to
its size and complexity.

4.2 Completeness
When analyzing a completeness problem (i.e., one where

the verifier returns spurious errors), we try to pinpoint the
cause of a failure by minimizing the test case, and possibly
adding explicit assertions. If a problem is not apparent, we
turn to a model in which the negation of a VC is satisfiable.
The general technique is to evaluate the failed assertion in
the model and try to trace the reasons why it fails. When
doing so, we usually arrive at a point where our conceptual
model of what should happen disagrees with the Z3 model.
If the annotations are correct, the disagreement is because
of a missing axiom or a wrong trigger. Such problems need
to be solved by both the verification tool author, but also
by the users, in case they use complex specifications.

4.2.1 The Model Viewers
As the models can get quite large, VCC includes two tools

for inspecting them. The VCC specific model viewer offers a
debugger-like view of the counterexample, interlinked with
the source code. One can trace pointers and inspect values
of fields of data structures in different states. It thus hides a
lot of axiomatization detail and is meant for the user of the
verification tool as an aid in debugging their specifications.

The other tool is generic and can be used with different
axiomatizations, mainly by the authors of the axiomatiza-
tion or the SMT solver. It displays all active terms from the
model and allows for inspecting equalities between them.
For every term one can also see its immediate sub- and
super-terms. For example, when looking at term rd(H7, p),
one can see it is currently equal to 17, go to its subterm
p, and then look at all other terms using p, e.g., rd(H6, p),
rd(H8, p) and wr(H8, p, 3), revealing value of pointer p in
different states.

The two encoding patterns described below do not alter
the logical value of the VC, and not even (significantly) the
search tree of the SMT solver, but are used only to make
the reason for failure more explicit in the model.

10 In Boogie it is referred to as the smoke test, from turning
a device on and seeing if the smoke goes out of it.

11 If we treat an SMT problem as a big conjunction, then the
UNSAT core is a (hopefully small) subset of the conjuncts,
which are unsatisfiable.

4.2.2 Instantiation Traces in Models
To make sure a quantified formula was triggered, one can

use marker functions. First, we axiomatize the marker func-
tion to be always true:

∀x, y. {mark1(x, y)} mark1(x, y)

Then, if we want to check if the following formula triggers:

∀x, y. ψ(x, y)

we change it into the following (leaving trigger intact and
preserving it truth value):

∀x, y. ψ(x, y) ∧ mark1(x, y)

This forces the model to include mark1(t, s) for every t, s,
for which the quantified formula is instantiated. Note that
∀x, y. ψ(x, y) might be used positively and negatively, for
example as part of a type invariant, which is why we need
to axiomatize the marker function to be always true.

Such marker functions can be used by the author of a
verifier, but are also available for the end-user if the language
allows for specification function definitions as it is the case
for VCC.

4.2.3 Assignment Traces in Models
When looking at the model, it is often useful to inspect

values of local variables at different points. Each source
level assignments to a variable introduces, during VC gen-
eration, a new incarnation of that variable. To help keep
track of different incarnations through the tool chain e.g.,
to protect from copy-propagation), after the assignment we
introduce an assumption, using the uninterpreted function
symbol local is(...), for example the following source code:

void foo()

{

int x;

x = 10;

x = x + 1;

assert(x < 11);

}

will be transformed to:

void foo()

{

assume(x1 == 10);

assume(local_is(the_x, 4, 2, x1));

assume(x2 == x1 + 1);

assume(local_is(the_x, 5, 2, x2));

assert(x2 < 11);

}

The parameters to local is(...) are a unique symbolic con-
stant, unused elsewhere, and thus immune from copy-propa-
gation, the line and column where the assignment took place
and the current value of the variable (i.e., a reference to
the current incarnation). The model for this program will
include local is(the x, 4, 2, 10) = true and local is(the x, 5,
2, 11) = true, revealing the value of x at different program
points, and allowing the user to spot why the assertion fails.
We use a similar technique to tie different heaps to source
locations.

4.3 Performance Problems
Usually there is a tension between expressiveness and ease

of annotation on one side and performance on the other side.
Generally, proper triggering allows for mitigating some such
tensions. A feature, bringing new expressive power, usually
consists of new function symbols and axioms. If the axioms
are triggered only by the new function symbols, parts of
the code not using the feature do not suffer performance
problems. Using a build server infrastructure to track the
time of executions of different parts of the test suite is a
good way of making sure that introduction of a new feature
does not interfere with existing use cases.

Performance problems tend to manifest themselves in larger
benchmarks, especially ones coming from users of the veri-
fication tool. An SMT solver usually allows one to gather
some simple statistical data at the end of its run. In the
case of Z3 such statistics include the number of quantifier
instances, conflicts, as well as various statistics from the
arithmetic module (which is usually the only non-core theory
of interest for VCC). Most of the performance problems we
had were due to excessive quantifier instantiation, but some
were due to inefficiencies in Z3, particularly in the arith-
metic module. The statistics help to distinguish between
those two cases: for example low number of instances per
second (in the case of Z3 and VCC less than about 10 000)
points to a problem different than quantifier instantiation.

4.3.1 The Causal DAG
In case of quantifier problems, one can instruct Z3 to save

to a log file the data concerning all quantifier instances made
during the search. For example, given the formula:

ψ ≡ (∀x. {f(g(x))} f(g(x)) ⇒ h(x, x))

if in the current model the terms f(d) and g(c) are active
and d = g(c), then Z3 creates an instantiation tautology
ψ ⇒ ψc, where:

ψc ≡ f(g(c)) ⇒ h(c, c)

After that, the following tuple is added to the log file:

Lc ≡ 〈ψ, [x := c], {f(d), g(c)}, {h(c, c)}〉

The tuple lists the reference to the quantified formula, the
substitution, the active terms that caused the match, and
the outcome of the instantiation (i.e., terms that were cre-
ated in the course of instantiation; the particular log entry
above assumes this is the first time in the current search
branch where h(c, c) was needed).

Later, in the same search branch, if an instantiation tau-
tology φ ⇒ φt is generated, where its log entry is:

Lt ≡ 〈φ, ..., {..., h(c, c), ...}, ...〉

we call Lc a cause of Lt. The directed graph formed by
instances with the causal relation (where the edge goes from
Lc to Lt) is acyclic (instances can only cause other instances
later in time). We refer to it as the causal DAG (directed
acyclic graph). This information might be imprecise (e.g.,
the instance where a term first appeared does not necessarily
have to be the one that caused the term to be activated;
the matching algorithm will not log terms from proofs of
required equivalence class merges and so on). Still, we have
found it invaluable in tracing performance problems.

By the nature of performance problems, the number of
instances involved tends to be rather large (up to millions).

We have thus implemented a tool for analyzing instantiation
log files, called the axiom profiler. It allows one to trace a
particular instance through the causal DAG, while also in-
specting various summaries. One summary is the cost of an
instance, which is the estimated number of instances caused
by it. More precisely, the cost of an instance node n in the
causal DAG E (where (n,m) ∈ E means n causes m) is
given by c(n):

c(n) = 1 +
X

(n,m)∈E

c(m)

indeg(m)

where indeg(n) = |{m | (m,n) ∈ E}|, is the number of in-
coming edges of n. In other words, the cost of an instance
is shared equally by all instances that caused it. The other
summary is the depth of the instance (which is also com-
puted by Z3 during runtime), which is a maximal sum of
weights of nodes on the path from a DAG root to the in-
stance. The weight is user-defined and defaults to 1. We
view weights as a promising future direction in restricting
solver search space, but do not have much experience with
them yet.

4.3.2 The Conflict Tree
Another piece of information that the Z3 log file provides

is the conflict tree. Consider the assignment stack in the
SMT solver. First a number of literals is pushed, and a
conflict is found. We can think of this chain of literals as
one long branch of a tree. Then backtracking occurs, taking
us somewhere up the chain, and, starting from there, new
sequence of assignments happens, creating another branch.
Backtracking always ends just below decision literals, thus
by analysing the sequence of literal assignments, decisions
and backtrack operations, we can reconstruct a tree, where
internal nodes are labelled by literals, the tree is branching
at decisions, and the leaves are labelled by conflicts.

Since information about literal assignments and quantifier
instantiation is interleaved in the log file, the costly places
in the search (ones where lots of quantifier instances are
generated) can be identified. This information can be later
attributed to conflicts, i.e., one can see how many quantifier
instances and literal assignments it took to discover a par-
ticular conflict. Therefore, one can pick a costly conflict at
random and try to see if it “makes sense”, i.e., if one expects
such conflict to contribute to the final outcome and if it re-
ally should be that hard to find it. Similarly, one can find an
instantiation at random and see if it “makes sense”. This is
the most effective way of finding performance problems we
have found. Clearly, this requires an intimate understand-
ing of the inner workings of axiomatization, as well as some
understanding of the SMT solver search algorithms, which
is why we view the axiom profiler as a tool for the author of
a verification tool, and not for the end-users.

4.3.3 Z3 Inspector
In Section 3 we have argued how important it is for the

SMT solver to return the “satisfiable” answer fast. However,
the ideal time constraints on such responses (in range of few
seconds) are very hard to meet with the current combination
of hardware speed, SMT solver performance and VC com-
plexity. As a partial remedy, Boogie offers its users a way of
inspecting the progress of Z3 on the current VC. Unlike in
other implementations [12] this is achieved without splitting
the VC into subformulas before sending them one-by-one

to the SMT solver. Instead, we instruct Z3 to simulate a
failure at pre-defined time intervals, and use the standard
error-reporting mechanism. This standard mechanism relies
on “labels” [18], which describe the part of formula, which is
satisfied by the current monome, and thus also the assertion,
negation of which is satisfiable in the model of the monome.
The labels also encode the execution path that lead to the
failing assertion.

Boogie, which is normally responsible for translation of
labels to error messages, captures continuous label output
of Z3 and passes it, along with error translation information,
to the Z3 Inspector tool. The Inspector displays the source
code of the program, from which the VC was generated,
where each line is annotated with possible errors that could
be reported for this line, should one of the obligations in
the VC fail to prove. As the SMT solver works through
the formula, the error message corresponding to the current
monome is highlighted.

This works particularly well for the case split strategy
in Z3, which tries to satisfy the formula left-to-right. This
means Z3 will try to prove assertions top-down and, which is
more important, will only move to the next assertion, after
the previous one is proven. Translated to Z3 Inspector terms
the assertion will blink, one by one, for certain amount of
time. If one assertion blinks for a long time, it means the
prover is trying too hard to refine a model for the case of
this assertion failing. The user of the verification tool can
then decide, based on time it took to prove this or similar
assertion before, to consider this particular assertion to be
faulty and kill the verification process.

The cumulative number of samples, pointing to the par-
ticular error message, is also displayed, allowing for analysis
of which proof obligation was particularly costly, also after
the search is done. One could imagine the conflict clauses
being communicated out of Z3, so Z3 Inspector could mark
the errors that are already guaranteed not to happen (i.e.,
we know that there is no model that would satisfy the nega-
tion of their assertions). This might be useful with a more
random case split strategies.

In general the Z3 Inspector provides progress information
about the verification process, which is accessible and mean-
ingful for the end-user. It was helpful in reducing user frus-
tration with the verification process by providing some basic
control over it.

5. CONCLUSION
We have presented some of the triggering patterns used

in software verification, as well as development practices for
axiomatizations, in hope of establishing the requirements
for a possible alternative to E-matching based quantifier in-
stantiation methods. Following the presented operational
view, where triggering is a way of programming the SMT
solver, we envision such an alternative to admit high degree
of control, e.g., a domain specific language based on term
rewriting systems. More automatic techniques, e.g., super-
position, could be useful in subproblems involving formulas
from the program specification, as such formulas are less
likely to contain useful guidance to the SMT solver, than
the ones from the background axiomatization.

Given some help from the SMT solver side, some of the
presented encoding patterns might be expressed more di-
rectly, allowing the SMT solver to treat them more effi-
ciently. For example, the “as trick”, of assuming f(c) = c,

just to be able to use f(x) in a trigger, is a method for
controlling when a certain axiom should be applied, and
the function f(...) does not have much logical meaning, just
polluting the data-structures of an SMT solver. If a na-
tive SMT construct for labelling terms and axioms would
be provided, one would not need to do so. Clearly each
such feature would need to have its possible performance
benefits weighted against complications in the SMT solver
implementation and input language.

Benchmarks. SMT benchmarks exercising techniques de-
scribed in this chapter are available in the UFNIA (and AU-
FLIA with older benchmarks) division of the SMT LIB. Cur-
rent VCC benchmarks will soon be submitted to the UFNIA
division, pending resolution of some known soundness issues.

Acknowledgements. The author wishes to thank Rus-
tan Leino, Nikolaj Bjørner and Stephan Tobies for their
insightful comments and suggestions regarding this paper,
Leonardo de Moura for his help in getting the ideas to work
with Z3, and Lieven Desmet for his contributions to the early
versions of the axiom profiler.

6. REFERENCES
[1] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs,

and K. R. M. Leino. Boogie: A modular reusable
verifier for object-oriented programs. In F. S. de Boer,
M. M. Bonsangue, S. Graf, and W.-P. de Roever,
editors, Formal Methods for Components and Objects:
4th International Symposium, FMCO 2005, volume
4111 of Lecture Notes in Computer Science, pages
364–387. Springer, Sept. 2006.

[2] M. Barnett, K. R. M. Leino, and W. Schulte. The
Spec# programming system: An overview. In
G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and
T. Muntean, editors, Construction and Analysis of
Safe, Secure, and Interoperable Smart devices
(CASSIS 2004), volume 3362 of Lecture Notes in
Computer Science, pages 49–69. Springer-Verlag, 2005.

[3] C. Baumann, B. Beckert, H. Blasum, and T. Bormer.
Better avionics software reliability by code verification
– A glance at code verification methodology in the
Verisoft XT project. In Embedded World 2009
Conference, Nuremberg, Germany, Mar. 2009. Franzis
Verlag. To appear.

[4] S. Böhme, M. Moskal, W. Schulte, and B. Wolff.
HOL-Boogie: An interactive prover-backend for the
Verifiying C Compiler. Journal of Automated
Reasoning, 2009. To appear.

[5] E. Cohen, M. Dahlweid, M. Hillebrand,
D. Leinenbach, M. Moskal, T. Santen, W. Schulte, and
S. Tobies. VCC: A practical system for verifying
concurrent C. In Theorem Proving in Higher Order
Logics (TPHOLs 2009), volume 5674 of Lecture Notes
in Computer Science, Munich, Germany, 2009.
Springer. Invited paper, to appear.

[6] E. Cohen, M. Moskal, W. Schulte, and S. Tobies. A
Precise Yet Efficient Memory Model For C. In
Proceedings of Systems Software Verification
Workshop (SSV 2009), 2009. To appear.

[7] E. Cohen, M. Moskal, W. Schulte, and S. Tobies. A
practical verification methodology for concurrent
programs. Technical Report MSR-TR-2009-15,

Microsoft Research, Feb. 2009. Available from
http://research.microsoft.com/pubs.

[8] Á. Darvas and K. R. M. Leino. Practical reasoning
about invocations and implementations of pure
methods. In M. B. Dwyer and A. Lopes, editors,
FASE, volume 4422 of Lecture Notes in Computer
Science, pages 336–351. Springer, 2007.

[9] L. de Moura and N. Bjørner. Z3: An Efficient SMT
Solver, volume 4963/2008 of Lecture Notes in
Computer Science, pages 337–340. Springer Berlin,
April 2008.

[10] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a
theorem prover for program checking. Journal of the
ACM, 52(3):365–473, May 2005.

[11] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B.
Saxe. Extended static checking. SRC Research Report
159, Compaq Systems Research Center, 130 Lytton
Ave., Palo Alto, Dec. 1998.

[12] J.-C. Filliâtre. Why: a multi-language multi-prover
verification tool. Research Report 1366, LRI,
Université Paris Sud, Mar. 2003.

[13] C. Flanagan, K. R. M. Leino, M. Lillibridge,
G. Nelson, J. B. Saxe, and R. Stata. Extended static
checking for Java. In Proceedings of the 2002 ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), volume 37 of
SIGPLAN Notices, pages 234–245. ACM, May 2002.

[14] Y. Ge, C. Barrett, and C. Tinelli. Solving quantified
verification conditions using satisfiability modulo
theories. In F. Pfenning, editor, CADE, volume 4603
of LNCS, pages 167–182. Springer, 2007.

[15] M. Janota, R. Grigore, and M. Moskal. Reachability
analysis for annotated code. In Sixth International
Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2007), pages
23–30. ACM, Sept. 2007.

[16] S. K. Lahiri and S. Qadeer. Back to the future:
revisiting precise program verification using SMT
solvers. In G. C. Necula and P. Wadler, editors,
POPL, pages 171–182. ACM, 2008.

[17] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A
notation for detailed design. In H. Kilov, B. Rumpe,
and I. Simmonds, editors, Behavioral Specifications of
Businesses and Systems, pages 175–188. Kluwer
Academic Publishers, Boston, 1999.

[18] K. R. M. Leino, T. Millstein, and J. B. Saxe.
Generating error traces from verification-condition
counterexamples. Sci. Comput. Program.,
55(1-3):209–226, 2005.

[19] K. R. M. Leino and R. Monahan. Reasoning about
comprehensions with first-order SMT solvers. In S. Y.
Shin and S. Ossowski, editors, SAC, pages 615–622.
ACM, 2009.

[20] M. Moskal, J. Lopuszański, and J. R. Kiniry.
E-matching for fun and profit. Electr. Notes Theor.
Comput. Sci., 198(2):19–35, 2008.

[21] Y. Moy. Automatic Modular Static Safety Checking for
C Programs. PhD thesis, Université Paris-Sud, Jan.
2009.

[22] S. Ranise and C. Tinelli. The SMT-LIB Standard:
Version 1.2. Technical report, Department of

http://research.microsoft.com/pubs

Computer Science, The University of Iowa, 2006.
Available at www.SMT-LIB.org.

[23] J. Saxe and K. R. M. Leino. ESC/Java design note 8a:
The logic of ESC/Java, 1999. Available at http:

//secure.ucd.ie/products/opensource/ESCJava2/

ESCTools/docs/design-notes/escj08a.html.

http://secure.ucd.ie/products/opensource/ESCJava2/ESCTools/docs/design-notes/escj08a.html
http://secure.ucd.ie/products/opensource/ESCJava2/ESCTools/docs/design-notes/escj08a.html
http://secure.ucd.ie/products/opensource/ESCJava2/ESCTools/docs/design-notes/escj08a.html

	E-matching for Theory Building
	Related Work and Contributions
	Background: The Hypervisor Verification and VCC

	Encoding Patterns
	The Simple: Tuples and Inverse Functions
	Extensible Records

	The Common: Framing in the Heap
	The Good Heap

	The Liberal: Versioning
	Filtering Trigger

	The Restrictive: Stratified Triggering
	The Weird: Distributivity, Neutral Elements and Friends

	Performance Requirements on the SMT Solver
	Debugging and Profiling Axiomatizations
	Soundness
	Completeness
	The Model Viewers
	Instantiation Traces in Models
	Assignment Traces in Models

	Performance Problems
	The Causal DAG
	The Conflict Tree
	Z3 Inspector

	Conclusion
	References

