
PROGRAMMING WITH TRIGGERS

Michał Moskal

Satisfiability Modulo Theories Workshop
August 2nd, 2009, McGill University, Montreal, Canada

Aachen, GermanyUniversity of Wrocław
Wrocław, Poland

OUTLINE

• case-study: an SMT-powered software verifier
applied to a commercial operating system

• tools and methods to make this work

– trigger-engineering

– tools:

• Axiom Profiler – postmortem analysis of the search

• Model Viewers – analysis of counter examples

• Z3 Inspector – live view of Z3 operation

WINDOWS HYPERVISOR

• virtualization platform

– thin layer of software between guest operating
systems and the hardware

• essentially a small operating system

– small by OS standards: 100kloc of C, 5kloc x64 asm

• scheduler, memory allocator, etc

– lock-free data structures

• shipping with Windows Server 2008

HYPERVISOR VERIFICATION (2007 – 2010)

Partners:

• European Microsoft Innovation Center

• Microsoft Research Redmond

• Microsoft’s Windows Div.

• Universität des Saarlandes

• German Research Center for Artificial Inteligence

co-funded by the German Ministry of Education and Research
http://www.verisoftxt.de

http://www.verisoftxt.de/

GOAL: FULL-BLOWN VERIFICATION FOR

EVERYONE

• functional properties
– but even memory safety depends on functional

correctness of complex data structures and
concurrency protocols

• automatic

• exercised on real code
– scalable – modular

– concurrency

– not changing existing code

• necessary tool support

VCC

• a deductive verifier for C

• verification methodology centered around

– two-state invariants

– ownership system

– concurrency

• uses Boogie and Z3 (or other Boogie-
supported provers)

VCC ARCHITECTURE

$ref_cnt(old($s), #p) == $ref_cnt($s, #p)
&& $ite.bool($set_in(#p, $owns(old($s),
owner)),

$ite.bool($set_in(#p, owns),
$st_eq(old($s), $s, #p),
$wrapped($s, #p, $typ(#p)) &&
$timestamp_is_now($s, #p)),

$ite.bool($set_in(#p, owns),
$owner($s, #p) == owner && $closed($s,

Generated Boogie

#include <vcc2.h>

typedef struct _BITMAP {
UINT32 Size; // Number of bits …
PUINT32 Buffer; // Memory to store …

// private invariants
invariant(Size > 0 && Size % 32 == 0)
…

Annotated C

:assumption
(forall (?x Int) (?y Int)

(iff
(= (IntEqual ?x ?y) boolTrue)
(= ?x ?y)))

:formula
(flet ...

SMT

owner)),
$ite.bool($set_in(#p, owns),
$st_eq(old($s), $s, #p),
$wrapped($s, #p, $typ(#p)) &&
$timestamp_is_now($s, #p)),

$ite.bool($set_in(#p, owns),
$owner($s, #p) == owner &&
$closed($s,

VCC Prelude

Available at http://vcc.codeplex.com/

http://vcc.codeplex.com/

A VERIFICATION METHODOLOGY

• annotation language
– e.g., first-order logic, higher-order logic,

separation logic; + specific features

• specification concepts
– ownership, type invariants, permissions

• modeling of the programming language
semantics
– how precise, what assumptions, etc.

• specification idioms

VERIFICATION METHODOLOGY

AS AN SMT THEORY

• complex

– all input language + specification language
constructions

• evolving with the verification tool

• not practical to implement as part of SMT
solver

• instead encoded using first-order logic

PROGRAMMING WITH TRIGGERS

• SMT formulas with quantifiers handled with
instantiation

– guided by E-matching, controlled by trigger
annotations

• SMT theory is programmed using triggers

TRIGGERS

• (usually) subterms of the quantified formula,
with free variables

• matched against active terms

– terms with interpretation in the current partial
model considered by the SMT solver

CAUSAL DAG

A LIST INVARIANT

(forall H:heap, S:set :: {inv(H, S)}
inv(H, S) <==>

(forall n:ptr :: {in(n, S)}
in(n, S) ==>

H[n, data] != null &&
(H[n, next] != null ==>

H[H[n, next], prev] == n) &&
in(H[n, next], S) &&
in(H[n, prev], S)))

• inv(H, S): nodes in set S form a doubly-linked list in heap H
• data is non-null
• prev link in the next node points back here
• S is next- and prev-closed

DEMO OF THE AXIOM PROFILER

THE AXIOM PROFILER

PREVENT LOOP

BY SPLITTING NEXT-CLOSEDNESS

(forall H:heap, S:set :: {inv(H, S)}
inv(H, S) <==>

(forall n:ptr :: {in(n, S)}
in(n, S) ==>

H[n, data] != null &&
(H[n, next] != null ==>

H[H[n, next], prev] == n))

&& (forall n:ptr :: {in(H[n, next], S)}
in(n, S) ==> in(H[n, next], S))

&& (forall n:ptr :: {in(H[n, prev], S)}
in(n, S) ==> in(H[n, prev], S)))

CHECK A PROGRAM

procedure add(S:set, q:ptr)
requires inv(H, S);
requires H[q, data] == null;
ensures inv(H, S);
modifies H;

{
H := H[q, prev := null];

}

inv(H, S) &&
H[q, data] == null &&
G == H[q, prev := null] &&
!inv(G, S)

Program correct
iff formula is UNSAT

DEMO OF THE MODEL VIEWER

THE MODEL VIEWER

WITNESSES

(forall n:ptr :: {in(n, S)}
in(n, S) ==> H[n, data] != null &&

(H[n, next] != null ==> H[H[n, next], prev] == n)) &&
(forall n:ptr :: {in(H[n, next], S)}

in(n, S) ==> in(H[n, next], S)) &&
(forall n:ptr :: {in(H[n, prev], S)}

in(n, S) ==> in(H[n, prev], S)) &&
H[q, data] == null &&
G == H[q, prev := null] &&
!(forall n:ptr :: {in(n, S)}

in(n, S) ==>
(G[n, next] != null ==>

G[G[n, next], prev] == n))

in(n0, S) &&
G[n0, next] != null &&
G[G[n0, next], prev] != n

We know: H[q, data] == null and H[n0, next] == G[n0, next],
and thus we need: in(G[n0, next], S) to trigger

Z3 thinks that
G[n0, next] == q

But n0 is a skolem constant, so it’s hard for the user to introduce it.

ONE STEP AHEAD

!(forall n:ptr :: {in(n, S)}
in(n, S) ==>
(G[n, next] != null ==>

G[G[n, next], prev] == n))

Whenever proving this thing, look one step ahead, or:
i.e., get in(G[n0, next], S) activated but don’t
loop. Please.

Hack the SMT solver to do it :-)

!(forall n:ptr :: {in(n, S)}
{ex_act(in(G[n, next]))}
in(n, S) ==>
(G[n, next] != null ==>

G[G[n, next], prev] == n))

EXISTENTIAL ACTIVATION

(forall H:heap, S:set :: {inv(H, S)}
inv(H, S) <==>

(forall n:ptr :: {in(n, S)}
{ex_act(in(H[n, next], S))}
in(n, S) ==>

H[n, data] != null &&
(H[n, next] != null ==>

H[H[n, next], prev] == n))

&& (forall n:ptr :: {in(H[n, next], S)}
in(n, S) ==> in(H[n, next], S))

&& (forall n:ptr :: {in(H[n, prev], S)}
in(n, S) ==> in(H[n, prev], S)))

When proving this
quantifier, use lemma

trigged by this

VCC IN ACTION

VCC VISUAL STUDIO PLUGIN

VCC: FAILED VERIFICATION ATTEMPT

VCC-SPECIFIC MODEL VIEWER

WORKING WITH VCC

• write a version of the spec

• verify, fail

• add assertions or look at the model to see
why it failed

– for bigger functions, do it a couple of lines at a
time, moving focus window down

• repeat

VERIFICATION ATTEMPT TIME

VS SATISFACTION AND PRODUCTIVITY

WANT IT TO GO FASTER?
PROFILE!

CAUSAL DAG

COST IN THE CAUSAL DAG

COST IN THE CAUSAL DAG

COST IN THE CAUSAL DAG

BROWSING THE CAUSAL DAG

THE INSPECTOR:
CONTROL TO THE PEOPLE

THE INSPECTOR

• ask Z3 to state the current model from time to
time

– in forms of labels

• translate such models to error messages

• display all possible error message and blink
the current one

SCREENSHOT

SOME NUMBERS

LIMITS ON MATCHING DEPTH

• matching depth on one of the list functions

– 10 heap related (10 heap updates in the function)

– 6 user-defined (different levels of expansion of the
invariant)

– total of 17

• the looping example shows that number of
instances can be easily exponential with depth

SCALE OF PROBLEMS

• prelude: 300 quantifiers, 50 multi-triggers

• Hypervisor program-specific background
predicate:
– 300 types, 1500 fields => 13000 axioms

– type description dwarfs VC for the function itself

• even Z3 E-matching indices didn’t take that
lightly

• without proper guidance any SMT solver is
likely to be lost

PERFORMANCE, PERFORMANCE, PERFORMANCE

Experience from the Hyper-V verification
• successful verifications:

– typical: 0.5–500s, average 25s
– current max: 2 500s
– all time max: 50 000s (down to 1 000s with Z3v2)

• acceptable time for interactive work: < 30s
• annotations (since Nov 2008):

– 15 000 lines
– 400 functions
– ca. 20% of codebase verified

VCC PERFORMANCE TRENDS NOV 08 – MAR 09

Attempt to improve
Boogie/Z3 interaction

Modification in invariant
checking

Switch to Boogie2

Switch to Z3 v2

Z3 v2 update

SUMMARY

SUMMARY

• program a custom theory for the SMT solver

• like for a “normal” programming language

– debug models (model viewers)

– profile traces (axiom profiler)

– profile with sampling (the inspector)

• but:

– lack of clear semantics

– possibly not the best programming model

VCC IS AVAILABLE!

• source code available for non-commercial
purposes at http://vcc.codeplex.com/

– includes the SMT tools!

• further information linked from there

http://vcc.codeplex.com/

