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ABSTRACT
A recent survey among developers revealed that half plan to
use HTML5 for mobile apps in the future. An earlier survey
showed that access to native device APIs is the biggest short-
coming of HTML5 compared to native apps. Several dif-
ferent approaches exist to overcome this limitation, among
them cross-compilation and packaging the HTML5 as a na-
tive app. In this paper we propose a novel approach by using
a device-local service that runs on the smartphone and that
acts as a gateway to the native layer for HTML5-based apps
running inside the standard browser. WebSockets are used
for bi-directional communication between the web apps and
the device-local service. The service approach is a general-
ization of the packaging solution. In this paper we describe
our approach and compare it with other popular ways to
grant web apps access to the native API layer of the oper-
ating system.

Categories and Subject Descriptors
D.2.m [Software Engineering]: Miscellaneous

General Terms
Languages

Keywords
HTML5, Native API, Web apps

1. INTRODUCTION
Since the introduction of the iPhone in 2007, app stores

have become a popular mechanism for hosting and distribut-
ing applications for mobile devices, so-called apps. Apps
generated $53 billion revenue in 2012, and are predicted to
generate $68 billion revenue in 2013 [22]. App development
is much more constricted in the choice of technologies as
every mobile platform favors different frameworks. Besides
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native apps that are written in the preferred programming
language of the respective platform, HTML5 technologies
gain traction for the development of mobile apps [12, 4].

A recent survey among developers revealed that more than
half (52%) are using HTML5 technologies for developing mo-
bile apps [22]. HTML5 technologies enable the reuse of the
presentation layer and high-level logic across multiple plat-
forms. However, an earlier survey [21] on cross-platform
developer tools revealed that access to native device APIs
is the biggest shortcoming of HTML5 compared to native
apps. Several different approaches exist to overcome this
limitation. Besides the development of native apps for spe-
cific platforms, popular approaches include cross-platform
compilation [14] and packaging common HTML5 code into
native apps [23].

In this paper we propose a novel approach that uses a
generic device-local service, or service for short, that runs on
the mobile device and that acts as a gateway, exposing native
device APIs to HTML5-based web apps running inside a reg-
ular browser. We show how WebSockets and HTTP can be
used for efficient bi-directional communication between web
apps and the service. The service approach provides a clear
separation between a web app, a web browser, and a device-
local service, thereby generalizing the established packaging
approach. By bundling the device-local service with the app
it is also possible to mimic the packaging approach. Specif-
ically, this paper makes the following contributions:

• a service-based approach to expose native APIs to web
apps

• a reliable and efficient WebSocket-based communica-
tion protocol between the native shell and the web app

• an authentication and authorization scheme to address
security and privacy concerns

• implementations for Android and Windows Phone

The paper is structured as follows: in Section 2 we present
related work and provide a taxonomy by which the various
approaches can be compared with each other. Section 3
explains in detail the device-local service approach proposed
in this paper. Section 4 discusses implementations of the
device-local service for the Android and the Windows Phone
platform. Finally, in Section 5 we provide a conclusion and
an outlook to future work.



2. RELATED WORK
This section discusses various approaches that allow de-

velopers to use HTML5 for mobile apps. We distinguish be-
tween the platform, packaging, cross-compilation, and the
device-local service approach. We provide a taxonomy to
highlight the differentiating factors between existing approach-
es and our proposed solution.

2.1 Platform
One approach to expose native functionality to web apps

is to add such support directly to the web app execution
platform. That platform can be simply a web browser (e.g.,
Chrome under Android, Safari under iOS or Internet Ex-
plorer under Windows Phone) or it could be at the level of
the operating system (e.g., WebOS, Tizen, Firefox OS).

The World Wide Web Consortium (W3C) coordinates the
efforts to create general platform-level web APIs that should
eventually be supported by browsers across all platforms.
Mature W3C Working Drafts include specifications for ac-
cessing audio functionality [1], access to gyroscope, compass
and accelerometer data [2], geo-location [17], media capture
from microphone or camera [15], sending SMS, MMS and
e-mail [7], full screen access [3], local database [16], two-way
communication with a remote host [9].

However, even for many of those existing specifications,
the actual implementation in most modern browsers is lag-
ging behind and is not uniform across all browsers. For many
other functions that can easily be accessed via native APIs
on various mobile platforms, e.g. Bluetooth communication
channels or Near Field-Communication (NFC), there are no
mature W3C standards yet.

In some cases, W3C specifications make it more difficult
for web apps than for native apps to achieve goal, for security
or privacy reasons. For example, the Cross-Origin Resource
Sharing (CORS) [20] specification requires server-side sup-
port for certain web requests to succeed. Native apps do not
suffer from this restriction, and there is no proposed mech-
anism for web browsers to elevate web app permissions.

2.2 Packaging
The packaging approach bundles the HTML5 source of

a web app including HTML, CSS, and JavaScript as data
of a native app. The native app, that is written in the lan-
guage of the respective platform, will instantiate a full-screen
browser widget and load the bundled HTML5 into that
widget (see Figure 1). The JavaScript running inside the
browser widget can invoke functionality on the native side
via some platform-specific mechanism. Likewise the native
side can make up-calls to the JavaScript using a platform-
specific mechanism. One benefit of the packaging approach
is that the resulting apps can be hosted on the regular app
store.

A prominent framework enabling the packaging approach
is Apache Cordova (formerly PhoneGap) [23]. Cordova is
available for all major mobile platforms. For each platform
Cordova offers some boilerplate code written in the respec-
tive native programming language. Cordova features a plu-
gin mechanism whereby support for new device API can eas-
ily be added. On Android, the boilerplate code is written in
Java and makes use of the WebView widget. For down-calls,
the method WebView.shouldOverrideUrlLoading() has to
be overridden to intercept requests to URLs representing

Figure 1: Packaging principle.

Cordova plugins. For up-calls, the Java code can use the
method loadUrl() as shown in the following code excerpt:

1 // JavaScript calling Java
2 window.navigate("my-plugin://do-something");
3

4 // Java calling JavaScript
5 ((WebView) view).loadUrl("javascript:some_js();");

One major problem of the packaging approach is the fact
that on most platforms the browser widget is not optimized
in the same way the standalone browser app is. E.g., under
Android versions earlier than 4.4, the WebView widget is not
using any of the optimizations found in recent versions of
the Chrome browser. Likewise under iOS, the performance
of JavaScript in the UIWebView widget is several times slower
compared to the Safari browser. While providing a cross-
platform approach, Cordova applications are often visibly
laggy due to restrictions of the platform.

Another problem of most implementations is the platform-
specific interface between the native boilerplate app and the
web app. This is usually realized via invoking JavaScript
containing encoded messages. In cases when the messages
are large (for example when transmitting an image from
the phone picture library) this results in multiple encod-
ings/decodings leading to high memory consumption and
unreliability. As we show in Section 3.4, this is however not
a limitation of the packaging approach itself.

While packaged apps typically ship with a particular ver-
sion of the HTML, CSS, and JavaScript content, this is not a
requirement. If the platform-specific interface is sufficiently
generic, the web content could be updated dynamically.

2.3 Cross-Compilation
Cross-compilation is the process of translating one high-

level language to another. The technique has gained promi-
nence for mobile applications to facilitate cross-platform de-
velopment while leveraging the SDK of the target platform.
E.g., the XMLVM project [18] will cross-compile Android
applications written in Java to Objective-C for iOS in such
a way that the provisioning and signing can be done us-
ing Apple’s Xcode. Starting from C# code, usually written
for Windows and Windows Phone apps, Xamarin Studio1

1http://xamarin.com/studio



can cross-compile to create iOS, Android and Mac apps. In
contrast to the packaging approach discussed in the previ-
ous section, cross-compilation yields better performance as
the app is executed on the native layer and not in a heavy-
weight, poorly optimized web view widget.

The cross-compilation technique for web apps translates
the JavaScript source code to the native layer. Because
JavaScript supports features such as dynamic binding and
prototyping, it is generally very difficult to translate JavaScript
source directly to the static programming languages on most
mobile platforms. Instead it is common to translate JavaScript
to some intermediate representation such as byte codes whose
execution generally achieves better performance compared
to the native browser widget.

Appcelerator Titanium2 is a tool for mobile development
that uses cross-compilation. Apps are written in JavaScript
and make use of Titanium specific APIs to interface with the
native layer. The following code represents “Hello World”
based on the Titanium framework:

1 // JavaScript using Titanium API
2 var win = Ti.UI.createWindow({
3 backgroundColor : ’white’
4 });
5

6 var myLabel = Ti.UI.createLabel({
7 text : ’Hello World’,
8 top : 250
9 });

10

11 win.add(myLabel);
12 win.open();

Titanium has its own UI abstraction layer for which it
defines an API. It is noteworthy that UI elements such as
the window or the label in the example above are mapped
to native widgets of the target platform (and not to HTML
as in the packaging approach), which gives a more native
look-and-feel at the expense of lower cross-platform com-
patibility. During the cross-compilation process, Titanium
statically analyzes the JavaScript source and builds a depen-
dency list of all the Titanium APIs used by the application.
A front-end compiler creates stubs code that includes appro-
priate platform-specific native code. Titanium also creates
all necessary project files that allow compilation of the ap-
plication using the native SDK of the target platform. On
Android, the JavaScript is precompiled to byte code. At
runtime, the byte code will be interpreted by the Rhino/V8
JavaScript interpreter [13, 5].

2.4 Device-Local Service
Accessing the native layer of a device via a service is a

novel idea introduced in this paper. Instead of defining an
API, access to a devices’ capabilities is controlled by a pro-
tocol. The protocol is a generalization of the packaging ap-
proach. It allows the code that provides access to the native
layer to reside in a separate device-local service that runs as
a native app on the device. The web app runs in a standard
browser and uses some IPC (Inter-Process Communication)
mechanism to interact with the external service.

The app implementing the device-local service is generic
and can be used by any web app. The native app that imple-

2http://www.appcelerator.com/

ments the device-local service can be hosted in the regular
app store and needs to be downloaded and installed only
once. The service listens on a local port and exchanges Pro-
tocol Data Units (PDUs) with the web app via WebSockets.
WebSockets provide a portable, cross-platform way of com-
municating with the service. Special care must be taken
to authenticate a WebSocket connection in order to avoid
exploits by malicious websites and native apps.

An advantage of the service approach is that the web app
runs in a standard web browser that offers much better per-
formance compared to browser widgets. Although the ser-
vice app has to be downloaded once from the app store, no
further dependencies exist from a developer’s point of view
in terms of tools or SDKs. Special emphasis is given to the
interoperability of the protocol: as long as the background
service is available for a particular mobile device, the web
app is agnostic of the platform it runs on.

By separating the application logic (web app) from the
presentation layer (web browser) and the low-level device-
specific implementation details (service protocol), the ser-
vice approach supports versioning and security updates for
each of those three components. Since the WebSocket-based
protocol is a generalization of an API, the service can also
be bundled with the app similar to the packaging approach.
Section 3 will discuss all aspects of the device-local service
approach in detail.

2.5 Comparison
Each of the four approaches (platform, packaging, cross-

compilation, service) that offer native API to web apps have
their advantages and disadvantages. They differ in their ex-
tensibility, hosting of apps, performance, as well as external
dependencies. Extensibility refers to the ease with which
new web API can be added. This is generally difficult for
the platform approach as the complete platform needs to be
updated, whereas other approaches are easier to augment.
The various approaches discussed in this section also differ in
the way web apps are hosted. Apps can either be hosted on
the web or in an app store. Each has its benefits and draw-
backs. App stores help with discoverability and generally
inspire more trust in the apps (through screening processes
and review systems). Web apps on the other hand are eas-
ier to deploy and update. Moreover, the app store content
restrictions (for example on executing downloaded code) do
not apply.

The approaches also differ in the performance of the re-
sulting applications. The packaging solution offers an easy
way to expose device API to a web app, however, since it
leverages the native web view widget that is often poorly
optimized, it generally results in low performance. The last
distinguishing factor is the dependency of each approach to
external tools used to build the application. The platform
solution is clearly superior in this aspect, since the web API
is already intrinsic to the platform and therefore does not
require any special tools. The other approaches either have
dependencies to an SDK that handles the compilation and
packaging of the app or in case of the device-local service
to a special app that needs to be downloaded and installed
on the device. Table 1 gives an overview of the different
characteristics of each of the approaches discussed in this
section.



Table 1: Comparison of platform, packaging, cross-compilation and service approaches.

Platform Packaging Compilation Service

Extensibility Difficult Easy Easy Easy
Hosting Web/App Store App Store App Store Web/App Store
Performance High Low High High
Dependencies None SDK SDK Service

3. DEVICE-LOCAL SERVICE APPROACH
The device-local service approach advocates a protocol

between the web app and a service that has access to the
native layer of a device. The protocol is agnostic of the
platform and can either be implemented as an external app
hosting the service or packaged with a specific end-user app.
The result is a clear separation between web apps and a
service acting as a gateway to the native API.

This section gives a detailed description of the service ap-
proach. First we discuss the protocol itself in Section 3.1. In
Section 3.2 we present an authentication and authorization
framework. Section 3.3 explains the ownership rules when
accessing resources stored on the device. In Section 3.4 we
show how the device-local service approach can be used to
mimic the packaging solution discussed in the previous sec-
tion.

3.1 Protocol
The protocol between a web app and the service is defined

by three individual components: (1) the transport mecha-
nism, (2) the PDUs (Protocol Data Units), and (3) the order
in which the PDUs are exchanged. In the following we give
an overview of each of those components.

A web app needs a transport mechanism to interact with a
service that is possibly implemented by a separate app. The
transport mechanism must satisfy several requirements:

1. Communication must be bi-directional. In particular,
it must be possible to push notifications from the ser-
vice to the app.

2. Must support data exchange for large size resources
such as image resources or music files. It should sup-
port the browser’s asynchronous loading of these re-
sources.

3. Can only use standard web technologies. This is neces-
sary to break out of the browser’s sandbox in a cross-
platform way.

These three requirements are met by WebSockets and
HTTP requests. The former can be used for efficient bi-
directional exchange of (small) PDUs between the web app
and the service. The latter is efficient for uploading or down-
load large data chunks in the background.

The transport layer is used to exchange PDUs between
the web app and the service. Request PDUs are sent from
the web app to the service while response PDUs are sent
in the opposite direction. We have opted to use JSON to
describe PDUs. Each request PDU has at least the two
attributes action and id. The former tells the service which
action (i.e., API) is to be performed. The latter is used to
match request and response PDUs. The response PDUs

sent from the service back to the web app have at least the
two attributes status and id where the status attribute
provides an error code. Depending on the nature of the
request or the response, additional parameters can be added
via appropriate JSON attributes.

The following code excerpt shows how a web app can con-
nect to the service via a WebSocket and then request gyro-
scope sensor readings:

1 // JavaScript
2 var ws = new WebSocket("ws://localhost:8042");
3 // Authentication & Authorization
4 var req = {action: "START_GYRO", id: 42};
5 ws.onmessage = function (e) {
6 var resp = JSON.parse(e.data);
7 if (resp.id == 42) {
8 // resp.x, resp.y, resp.z
9 }

10 };
11 ws.send(JSON.stringify(req));

The START_GYRO action will trigger a continuous stream
of response PDUs that each contain the same ID (42) as
well as the attributes x, y, and z for the actual sensor data.
The web app can send the action STOP_GYRO if it no longer
wishes to receive sensor data. While small-sized parameters
(such as the sensor data in this example) are added as JSON
attribute of the corresponding PDU, references to large re-
sources are stored as URLs in the PDUs and the actual data
is loaded by the browser via regular HTTP GET requests.
Similarly, large resources such as images can be sent by the
web app to the service via HTTP PUT requests.

The actual protocol is defined by the various actions that
are sent by the web app. It is mostly a standard request/
response protocol where one request PDU results in one re-
sponse PDU. The example of the gyroscope shows that one
request PDU can also result in a sequence of response PDUs
that is terminated by the STOP_GYRO action. In some cases,
there is a finite set of response PDUs for a given action.
E.g., the LIST_CONTACTS action will enumerate all contacts
of a phone’s contact database and send each contact in a
separate response PDU. The web app can recognize the last
response for a given request PDU via the JSON attribute
lastForId that signals that this PDU will be the last for
the request PDU with the matching id.

3.2 Security
While WebSockets provide an elegant and more impor-

tantly portable way of accessing an external service, it also
leads to security risks. In some sense, the WebSocket pokes
a hole through the browser’s sandbox by giving access to po-
tentially sensitive data stored on the phone. The user of a
web app needs to be made aware of possible security threats



Figure 2: Authentication protocol.

and has to decide whether he or she is willing to give the
web app certain permissions. Granting an app the permis-
sion to access the contact database could possibly lead to a
privacy issue when those contacts are uploaded to a remote
server. Ultimately the user has to trust a web app not to do
anything harmful.

We adopt the Android permission model for mobile apps:
an app has to request permission from the user when ac-
cessing sensitive resources. Permissions are requested via
the special action REQUEST_PERMISSIONS. The granularity of
the permissions is comparable to Android. Only once the
user grants the permission, the web app can invoke the ap-
propriate actions. For security reasons, the service and not
the web app has to prompt the user for the permissions.
Note that the service is assumed to be trusted and our secu-
rity model does not address the case of a malicious service.
The service will open a modal dialog and display the origin
of the request along with the requested permissions that the
user can either approve or deny.

In order for the user to make an informed decision about
granting permissions, they have to know the actual origin
of the request. The origin is communicated to the service
as an HTTP header field when the WebSocket connection
is established. If the connection is initiated by a trusted
browser then the origin header field can also be trusted.
However, it is also possible that a malicious app pretends to
be a trusted browser and spoofs the header. We introduce
a handshake protocol to disallow such spoofing.

Figure 2 shows the authentication protocol. First the web
app opens a WebSocket connection to the service. The ori-
gin information of the HTTP header cannot be trusted by
the service. The web app sends an authentication request
and immediately closes the WebSocket again. During the
next step, the service will use a platform-specific way to re-
launch the web app via a trusted mechanism. In Android
this trusted mechanism is the ACTION_VIEW Intent. The URI
used as a parameter of the ACTION_VIEW Intent will include
the domain of the authentication request plus a token that
the service generates.

Once the web app has been re-launched, it will open a
WebSocket to the service again. This time, it will authenti-
cate the connection by sending the token back to the service.
At this point the service can trust the origin of the request

and PDUs can be exchanged via the WebSocket. Typically,
after authenticating the web app will save the token in the
browser local storage, so it can be reused later without re-
launching. Our approach is similar to the implicit flow with
a known redirection URI of the popular OAuth v2 protocol
[6, 10].

3.3 Resource Management
WebSockets are particularly useful for bidirectional com-

munication that facilitates pushing of notifications from the
device-local service to the web app. Sensor data, such as
the gyroscope mentioned earlier, can be pushed to the web
app whenever new readings become available. However, the
device-local service also provides access to components that
return large payloads. Examples are the camera and the
gallery app that return images or the media app that pro-
vides access to sound and video files. In principle it is possi-
ble to inline these resources within the response PDU via a
so-called data URL [11]. The following JSON snippet shows
the inlining of an image via a data URL:

1 // Response PDU, JSON
2 {
3 "id": 43,
4 "image": "data:image/png;base64,iVBORw..."
5 }

The Base64 encoded version of the binary image data is
embedded in the JSON of the response PDU. Although data
URLs allow transmission of arbitrary resources to the web
app, this approach has distinct disadvantages. The com-
plete resource needs to be encoded by the sender before it
can be transmitted. Likewise, the receiver first needs to re-
ceive the resource in its entirety before it can be decoded,
resulting in excessive memory consumption and visible lag
in the web apps responsiveness. Browsers handle the load-
ing of resources in a different thread and are usually capable
of using a partially loaded resource. For example, a browser
will typically start playing audio or video streams before
they are fully transmitted, and progressively loading images
will not block the UI thread.

For this reason the device-local service will also run a sim-
ple HTTP server that aides in the transfer of large volume
payloads. The response PDU contains a URL that points to
the HTTP server and the resource to be loaded. In order to
secure the HTTP server from unauthorized access by other
apps, the URL needs to include the same authentication to-
ken used to authenticate the WebSocket connection:

1 // Response PDU, JSON
2 {
3 "id": 43,
4 "image":
5 "http://localhost:8044/example.png?AUTH=xyz"
6 }

The same origin policy of the web browser would nor-
mally disallow HTTP requests from the domain of the web
app to localhost:8044. However, because we already have
an authentication mechanism in place our HTTP server can
safely disable this behavior using cross-origin resource shar-
ing headers. Interestingly, no such headers are necessary in



the WebSockets server (which should just respond with 403
Forbidden, if it does not accept the origin of the request).

Although the embedded HTTP server solves the problem
of efficiently loading resources lazily, it also introduces a new
challenge. Since there is now an additional level of indirec-
tion – the URL points to a resource stored on the device – the
question about the lifecycle of the resource arises. With such
indirect resource URLs comes the need to properly manage
the lifetime of the identified resources. Many resources rep-
resent objects which are already stored on the device, e.g.,
contacts, songs, pictures. As long as the objects are not re-
moved from the device, the URLs will remain valid. Other
resources are created at runtime, e.g., a still picture cap-
tured by the camera, or a microphone recording. For those
resources, our convention is to add them to the respective
local libraries (of pictures, sounds, etc.). It is then up to the
user to delete these resources. It is expected that the web
app will fail gracefully for resources that have been deleted
by the user.

3.4 Optional Packaging
While the pure service approach provides a clear separa-

tion between a web app, a web browser, and a device-local
service provider app, it is still possible to package everything
together into one app. Packaging can be done in a way very
similar to the Apache Cordova model discussed in Section
2.2, combining the HTML, CSS and JavaScript assets as
data in a native app that instantiates a web view widget
and also implements the service protocol discussed above.

The WebSocket server as well as the regular HTTP server
that are embedded in the packaged app potentially expose
their services via certain ports to any app running on the
mobile device. In order to secure the server, the token-
based authentication model mentioned in Section 3.2 is still
needed. However, the steps of requesting permissions and
relaunching the web app with a token can be simplified:
When the packaged native app starts, it generates a ran-
dom token and embeds it within the JavaScript code of the
web app. When the JavaScript code connects to the ser-
vice, it presents that token, and the service can trust the
JavaScript code. This eliminates the need for the otherwise
separate steps of requesting permissions involving a user in-
teraction and relaunching the web app in order to provide
it with a secret token. Instead, the permissions have to be
granted when the packaged app is downloaded from the app
store.

4. IMPLEMENTATIONS
We have implemented the device-local service approach

for Android as an external app and via a packaging ap-
proach for Windows Phone, described in Sections 4.1 and
4.2 respectively. Section 4.3 details the API coverage of the
current versions.

4.1 Android Implementation
In this section we show how the idea of a background

service that acts as a bridge to a smartphone’s native API
was implemented for the Android platform. The project
is dubbed WebAppBooster due to its features. Figure 3
shows the general architecture. We make use of an Android
service that can run independently in the background on the
device. The Android service launches a WebSocket server
as well as a regular HTTP server that accept connections

Figure 3: WebAppBooster architecture.

from localhost on different ports. The WebSocket server is
used to exchange PDUs as explained in the previous section.
The HTTP server is used to transfer large resources such as
images or media files.

A browser such as Chrome or Firefox running on the An-
droid device can be used to download a web app from a
remote web site. The web app then uses a WebSocket con-
nection to communicate with the Android service. WebApp-
Booster supports access to various native device API such
as contacts, calendar, media as well as all sensors (camera,
gyroscope, magnetometer, etc). WebAppBooster also pro-
vides access to the Bluetooth stack, allowing web apps to
interact with Bluetooth-enabled devices. WebAppBooster
is built using a flexible plugin mechanism that makes it easy
to add new functionality.

As explained in the previous section, special attention
needs to be given to the authentication mechanism. We-
bAppBooster needs to verify the origin of a request so that
the user can rely on this information when deciding whether
or not to grant permissions. To solve this problem, WebApp-
Booster will open a new trusted browser instance, using
Android’s Intent system. When WebAppBooster receives
an authentication request from http://example.com, it will
send an ACTION_VIEW intent with that URI. This intent is
usually processed by a browser app, opening a new browser
window and navigating to the given URI. If there happen to
be multiple apps installed that can process the ACTION_VIEW

intent, the user will be presented with a so-called activity
chooser dialog. Even if a malicious app also registers an
intent filter for ACTION_VIEW, it will not get launched auto-
matically, but it will be up to the user to select the preferred
target application.

Once a WebSocket connection has been authenticated, the
web app needs to authorize the API it wishes to use. Autho-
rization has to be handled by WebAppBooster as the trusted
entity. This implies, that WebAppBooster needs to present
the user with a modal dialog where the user can either accept
or reject the request as can be seen in Figure 4. It is inter-
esting to note that in the screenshot, the modal dialog was



Figure 4: WebAppBooster screenshot.

created by WebAppBooster and rendered over the Chrome
browser that can still be seen in the background. It can be
argued that allowing a background service to superimpose
a user interface over the app running in the foreground is a
security problem in Android. Since the Android API allows
such usage, WebAppBooster makes use of this feature for its
own purposes.

4.2 Windows Phone Implementation
On Windows Phone background tasks are generally only

allowed to run periodically to conserve battery, and it is not
possible to create a background service that is always lis-
tening for incoming requests. This prevented us from imple-
menting a dedicated bridge service app as we did on Android
with WebAppBooster. However, the WebBrowser control
that can be embedded in regular apps on Windows Phone
8 is essentially identical to the built-in browser in terms of
performance and capabilities. This allowed us to implement
our service protocol using the packaging approach without
the usual performance penalties.

A packaged app on Windows Phone consists of C# startup
code, an embedded WebBrowser control, and an HTTP and
WebSocket server which implement the service protocol via
various plugins. Figure 5 shows the general architecture. On
startup, the C# code issues a call WebBrowser.Navigate(uri)
with a target uri such as ms-appx:///index.html to open
the initial page of the embedded HTML code. The HTML5,
CSS3 and JavaScript files used by the packaged app are ex-
actly the same as the ones in the web app, with one ex-
ception: A randomly generated token gets embedded in
the JavaScript code, which will later be used for authen-
tication. The files reside in the so-called isolated storage,
a location only accessible by the Windows Phone app it-

Figure 5: Windows Phone packaged app architec-
ture.

self. From within the WebBrowser control, the JavaScript
code will then proceed to open a WebSocket connection at
ws://localhost:8042. The JavaScript code uses the em-
bedded token to authenticate (which is a simplified flow
compared to the WebAppBooster implementation for An-
droid where a security token gets communicated from the
service to the browser by opening a new browser instance).
The embedded HTTP and WebSocket servers, listening on
localhost, will answer the request. The HTTP and Web-
Socket server have been implemented using only the Win-
dows Phone C# SDK and the regular networking stack; they
implement exactly the same protocol as our Android imple-
mentation.

The HTML5, CSS3, JavaScript and compiled C# binaries
containing the startup and HTTP and WebSocket server
code and plugins are all bundled together into a Windows
Phone app.

4.3 Implemented APIs
We have so far implemented about 60 distinct actions (see

Table 2). The device-local service offers capabilities to web
apps that are usually limited to native apps. It provides ac-
cess to all built-in sensors such as compass or gyroscope as
well as device-local databases such as contacts or calendar
entries. All of these are available in our Windows Phone
implementation, and most of them are also available on An-
droid. Some of them require further explanation:

• device orientation refers to both reading and locking it

• system-level notification refers to setting up a commu-
nication channel with the server, where the server can
push notifications to the device, which are then dis-
played in the notification drawer (on Android) or as
toast notifications (on Windows Phone)

• social sharing brings up platform-specific dialog for
sharing content (links, images) on social media

• web request proxy lets the web app make arbitrary
web requests circumventing the browser’s same origin
policy [20]



• local database provides a reliable local storage; while
there are already two W3C standards for browser-based
local databases [8, 16], we have found multiple issues
working with them in practice: while Web SQL Data-
base [8] is no longer on the W3C Recommendation
track, it is the only database supported in (mobile) Sa-
fari at the time of writing. Indexed Database API [16]
is on the W3C Recommendation track and supported
by all other major browsers. However, all browsers im-
pose low limits on how much can be stored (typically <
50MB), and when the limits are exceeded, they poorly
communicate this problem to the user and the web app

Locking device orientation and taking screenshots may be
difficult or impossible to implement sensibly with the ser-
vice approach (the service does not know if the current run-
ning process is the browser with the web app in foreground).
They are however very useful in the packaging approach.

The Android implementation of WebAppBooster is avail-
able as open source3 and as an app in the Google Play
Store4; a demo page on the web5 enables Android users to
explore the protocol.

One popular application that makes use of WebAppBooster
in order to access sensors and other data is the TouchDevelop
web app6. TouchDevelop is a general-purpose development
environment that allows authoring and running mobile apps
on mobile devices [19].

The Windows Phone implementation was used by the
TouchDevelop team at Microsoft Research to publish the
TouchDevelop app in the Windows Phone Store.7 Five months
after the release of the packaged TouchDevelop app for Win-
dows Phone, the app was downloaded more than 80,000
times. It exposes most of the native APIs available on Win-
dows Phone. In fact, the JavaScript code embedded in the
packaged Windows Phone app is identical to the JavaScript
code used in the web app, so all these services could get used
on any other device in a web browser if a corresponding We-
bAppBooster implementation is available.

5. CONCLUSIONS AND OUTLOOK
This paper introduces a novel approach to grant HTML5-

based apps access to the native layer of a device via the
so-called device-local service. Instead of defining an API as
in the packaging approach, the device-local service interacts
with the web app via a protocol that allows for more flex-
ible solutions. It can be implemented as a separate service
running on the device or packaged with the app itself.

As part of the ongoing work we will add missing features
of the service protocol to WebAppBooster. Future work in-
cludes the implementation of the service protocol for more
platforms. While it would be technically possible on virtu-
ally all modern platforms, licensing restrictions of the stores
used to distribute apps may not allow a service provider
app that exposes local sensors and data. Recent iOS license
changes would allow an app similar to the WebAppBooster
app for Android.

3http://sourceforge.net/projects/webappbooster/
4https://play.google.com/store/apps/details?id=
org.webappbooster
5http://webappbooster.org/demo/
6https://www.touchdevelop.com/
7http://www.windowsphone.com/s?appId=
fe08ccec-a360-e011-81d2-78e7d1fa76f8

Table 2: List of services currently implemented for
Android “A” and Windows Phone “WP”. For each
service we state the number of actions (#) and
whether a special permission is required. Some ser-
vices do not require a prior permission, but every
action invocation is vetted by the user.

# Category Impl. Perm.

1 Access to appointments A/WP yes
2 Access to contacts A/WP yes
5 Access to picture library A/WP yes
5 Access to music library A/WP yes
7 Access to music player A/WP yes
1 Playing sounds WP
1 Still picture capture A/WP yes
1 Recording from microphone A/WP yes
2 Reading accelerometer A/WP
2 Reading gyroscope A/WP
2 Reading compass WP
3 Device orientation WP
1 System-level notifications A/WP
1 Vibration control A/WP yes
5 Bluetooth connections A/WP yes
4 NFC tags reading/writing WP yes
1 FM radio control WP
1 Network information A/WP
1 Battery charge level WP
1 Sending SMS WP vetted
1 Speech recognition WP
2 Speech synthesis A/WP
1 Clipboard access WP yes
1 Social sharing A/WP vetted
1 Web request proxy A/WP yes
1 OAuth2 authentication A/WP
1 Taking screenshots WP yes
4 Local database implementa-

tion
WP yes

1 Logging (for debugging) WP

The device-local service makes use of a WebSocket and
HTTP servers running on the same device as the app itself.
However, it might be an interesting idea to allow a web app
access to the device-local service running on another device.
This could be interesting for applications such as distributed
storage and sensing networks.

Another interesting application is a “packaging service”
that creates a native app by automatically packaging the
web app with the device-local service. TouchDevelop al-
ready provides a packaging service to package JavaScript
code into Windows Phone apps. Similarly, packaging ser-
vices for other platforms could produce Android, iOS, or
Windows Phone apps from web apps.
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[7] D. Hazaël-Massieux, S. Chitturi, N. Widell, M. A.
Oteo, and M. Froumentin. The messaging API. W3C
working draft, W3C, Apr. 2011.
http://www.w3.org/TR/2011/WD-messaging-api-
20110414/.

[8] I. Hickson. Web SQL database. W3C note, W3C, Nov.
2010. http://www.w3.org/TR/2010/NOTE-
webdatabase-20101118/.

[9] I. Hickson. The websocket API. Candidate
recommendation, W3C, Sept. 2012.
http://www.w3.org/TR/2012/CR-websockets-
20120920/.

[10] B. Leiba. Oauth web authorization protocol. IEEE
Internet Computing, 16(1):74–77, 2012.

[11] L. Masinter. The ”data” URL scheme. RFC 2397
(Proposed Standard), Aug. 1998.

[12] T. Mikkonen and A. Taivalsaari. Apps vs. open web:
The battle of the decade. In Proceedings of the 2nd
Workshop on Software Engineering for Mobile
Application Development (MSE’2011), pages 22–26,
2011.

[13] Mozilla.org. Rhino: Javascript for java.
http://www.mozilla.org/rhino/. Accessed:
2014-01-22.

[14] J. Ohrt and V. Turau. Cross-platform development
tools for smartphone applications. Computer,
45(9):72–79, 2012.

[15] I. Oksanen, A. Kostiainen, and D. Hazaël-Massieux.
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