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Abstract. Type inference in polymorphic, nominal type systems with
subtyping, additionally equipped with ad-hoc overloading is not easy.
However most mainstream languages like C#, Java and C++ have all
those features, which makes extending them with type inference cumber-
some. We present a practical, sound, but not complete, type inference
algorithm for such type systems. It is based on the on–line constraint
solving combined with deferral of certain typing actions. The algorithm
is successfully employed in functional and object–oriented language for
the .NET platform called Nemerle.

1 Introduction

Type inference is the task of statically reconstructing type annotations for a
program without them. While it is used in the languages of the ML family since
the very beginning, the more mainstream languages were rather lazy to adopt it.
We believe this is partially due to the problems with combining type inference
with nominal type systems with subtyping.

During the rest of this section we will try to depict this problem in more detail
and present the key idea of our solution. The rest of the paper is dedicated to
formal treatment of the solution.

1.1 Motivation

There are several problems with type inference and mainstream languages –
proper error reporting, dealing with nominal types, ambiguous member access,
subtyping and static overloading to name a few.

We faced them during our work on the Nemerle1 programming language.
It is a functional and object–oriented language for the .NET platform. It was
thought as a transition language for people with C# (or similar) background,
to convince them to functional programming. It provides easy access to the
common attributes of functional languages (functional values, pattern matching,
data types and so on), but still shares most of the syntax with C#. It was quite
important to also share the semantics and object model, where possible.

1 http://nemerle.org/



We therefore had to face a difficult problem of resolving member access in an
environment with static overloading, nominal type system and subtyping. For
example consider the following type judgment using overloaded member access
operator (“.”)2:

(λx. x.foo) : ∀α, β. α → β where α <: {foo : β}

where {foo : β} stands for type of objects with a field named foo of type β and
<: stands for subtyping relation. The typing is both correct and quite precise.

However the obvious problem here is that the type {foo : β} is not nominal,
for example there are no such types in .NET nor Java runtimes.

So what can we do to get the nominal type for this expression? First idea
would be to look up classes with a field foo, and if there is only one such class,
say τ , where the field has type σ, then we can give the above expression type
τ → σ. This is what OCaml and O’Haskell do for record types – both require
record fields to be unique.

The most important problem with this approach is the case where there are
two or more classes with the field foo. Types get complicated, and moreover, in
the generated code only one nominal type can be assigned to x due to runtime
environment limits.

There is another idea – to leave the correct structural type, as the one above,
until after inference is completed for a given compilation unit. That is to defer
the nominal type selection until more information is collected. This is something
along the lines of what SML does for records.

It is still problematic though – working with unconcreteised types is hard,
when one wants features designed without inference in mind like static overload-
ing or implicit conversions. The other problem is error messages – it is far better
to complain about types the user knows something about, like list[int] and
not about some structural monsters that can get a few pages long. Moreover we
loose link between source code location and the error (constraint solver may fail
in another constraint, resulting from some other source location).

Because of the problems above Nemerle did not have a proper inference
rules for member access – it was always required to annotate parameters that
were going to be used for member access like this: λx : Bar. x.foo. This was
problematic in the practical usage of the language, so while the algorithm we
present is still not complete, it solves this problem which seems to be a step in
the right direction.

We use a subtyping constraint solver combined with deferring parts of type
inference to get precise nominal types, which is a novel approach to solve the
ambiguous member access problem.

2 This is supposed to mean a function extracting a field named foo from an object
passed to it.



1.2 The Idea

This technique of deferring typing comes from a trivial observation that most
functions are finally used somewhere. Because we infer parameter types only for
local functions, the use sites can be easily inspected. As a result a proper type
for the formal parameter can be often inferred. For example consider3:

let invoke = λx. x.some method of foo() in
let a list = [make foo(1), make foo(2), make foo(3)] in
List.Map(a list, invoke)

The proper type of the local function invoke cannot be inferred until List.Map
(...) is typed and the restriction is placed on the type of the invoke single ar-
gument. The List.Map function has the type ∀α, β. list[α]× (α → β) → list[β],
which binds the result type of make foo, that is Foo, with the type of the single
invoke argument (through the α type variable). After this is done, we can easily
type member access on x inside the invoke function.

Note that various techniques of the local type inference [17] cannot type
the above expression. They can (in most cases) handle a case when the lambda
expression is used directly:

List.Map(a list, λx. x.some method of foo())

We have however found this not to be good enough – it should be always possible
to name and reuse local functions without additional hassle for software engi-
neering reasons. In the example above the invoke function can be reused with
some other list of objects of type Foo (though not some with other, unrelated
objects with some method of foo method). We have also found the locality of
type variables not to work very well with polymorphic, mutable collections.

So the basic idea is to type the expression as usual, but in case where normally
an ambiguity error would have been reported we just put this expression on the
queue of expressions to be typed later. This requires certain open–mindness in
treatment of type variables – we cannot generalize them too early, they have to
be open to get new constraints, that can result from typing expressions from the
“later–queue”.

We use a subtyping constraint solver. We however require it to fulfill certain
“on–line” requirements – we have to be able to add constraints on the fly, check
if the solver is still consistent and query the upper and lower bounds on types
that can be assigned to a given variable in the final solution. These bounds are
used to type member access.

The rest of the paper is organized as follows: Sect. 2 describes the source lan-
guage we are going to use, Sect. 3 describes the type inference algorithm, states
two theorems about its soundness and gives a sketch of the constraint solver
implementation, next Sect. 3.6 and 4 gives some insights about how to make
the algorithm deterministic and how it performs in the Real World scenarios.
Finally we present related and future work.
3 Foo is a class type here, make foo constructs new objects of this type and

some method of foo is clearly some method in the Foo class.



2 The Language

There are two aspects of the language, we are interested in. First we have a de-
scription of an environment in which a program is interpreted. This corresponds
to all global definitions within a program. Second we have an expression to be
typed. This corresponds to a single method’s body.

The environment E is a set of classes. A class is a term of the following form:

class k(α1, . . . , αn) : τ1, . . . , τl {m1 : σ1, . . . ,mq : σq}

where n, l, q ≥ 0, αi range over infinite denumerable set V of type variables,
mi range over infinite denumerable set M of member identifiers, k range over
infinite denumerable set K of type constructors and finally τi and σi range over
the set T of types defined as follows:

τ ::= α | k(τ1, . . . , τn) | (τ1, . . . , τn) → τ0

where n ≥ 0, and additionally for a parametric type k(τ1, . . . , τn) to be valid,
there has to be a class k(α1, . . . , αn) . . . ∈ E.

An example class definition can look like this:

class Set(α) : IComparable(Set(α)), IEnumerable(α) {
add : (α) → Set(α)
add : (α, α) → Set(α)
compare to : (Set(α)) → Int32()
get enumerator : () → IEnumerator(α)

}

Please note that the add member is defined twice inside Set, with different types.
We allow such overloading.

We define FV : T → 2V to be a free variable set of a given type. It is simply
set of all the type variables used in it.

A substitution is a function η : V → T . We overload the symbol η for the
above function and its homomorphic extension to η : T → T . We use notion
[α1 := τ1, . . . , αn := τn] (or sometimes [α := τ ]) for a substitution replacing αi

with τi for i = 1 . . . n, and being identity elsewhere. A substitution η is ground
iff ∀α. FV (η(α)) = ∅.

2.1 Subtyping

To define what is subtyping we first need to place additional restrictions on E:

1. for any E and k there exists at most one class named k in E,
2. given a definition class k(α1, . . . , αn) . . . each type τ occurring in it (either

after the : or in the member declarations) has to fulfill FV (τ) ⊆ {α1, . . . , αn},
3. the relation `<: on types, defined according to the rules listed in Fig. 1, must

have no cycles, i.e. ` k(τ1) <: σ and ` σ <: k(τ2) implies k(τ1) = k(τ2) = σ.



` τ <: τ

` τ1 <: τ2 ` τ2 <: τ3

` τ1 <: τ3

` τ1 <: τ2

` η(τ1) <: η(τ2)

` τ0 <: σ0 ` σ1 <: τ1 . . . ` σn <: τn n ≥ 0

(τ1, . . . , τn) → τ0 <: (σ1, . . . , σn) → σ0

class k(α) : . . . , τ, . . . {. . .} ∈ E

` k(α) <: τ

Fig. 1. Closure rules for subtyping.

This definition of `<: is a subset of runtime subtyping available in .NET 2.0
– in particular ` τ1 <: τ2 implies that the set of values of type τ1 is contained
within the set of values of type τ2.

Additionally we define relation on type constructors <:⊆ V × V:

k1 <: k2 ⇔ ∃τ1, τ2, ` k1(τ1) <: k2(τ2)

2.2 Expressions

The input to our type inference algorithm consists of an environment and an
expression to be typed. We define the set E of expressions using the following
abstract syntax:

e ::= new k (object construction)
| x (local value reference)
| e0(e1, . . . , en) (function call)
| e.m (field access)
| λ(x1, . . . , xn). e (function definition)
| let x = e1 in e2 (value binding)

where n ≥ 0, k range over K, m range over M and x (and xi) range over infinite
denumerable set I of identifiers.

The output is an error symbol or a typed expression (a member of the set
ET ) defined using the following abstract syntax:

eT ::= new τ (object construction)
| x (local value reference)
| eT

0 (eT
1 , . . . , eT

n ) (function call)
| eT .mτ (field access)
| λ(x1 : τ1, . . . , xn : τn). eT (function definition)
| let x = eT

1 in eT
2 (value binding)

where n ≥ 0, τ (and τi) range over T and other metavariables are defined as
above.



The typed expressions are very similar to plain expressions, but the types
of lambda variables are explicitly specified and member access is fully resolved.
While the set E is considered to be equivalent to source Nemerle programs, the
ET set is considered a model for the CIL4.

We require identifiers bound in the let-bindings and λ–abstractions to be
unique and used only within their scope. We omit the trivial algorithm enforcing
that for brevity.

3 Typing

For the rest of this section we fix an environment E.

3.1 The Constraint Solver

We use a device called the constraint solver to discover most facts about the
code we are going to type. This section presents just the interface of the solver,
implementations notes can be found in Sect. 3.5.

A constraint solver algorithm decides if a given set of subtyping inequations,
has a solution.

Definition 1. The solution of a constraint solver C = {σi C τi}n
i=1 is a ground

substitution η such that:

∀i ∈ {1, . . . , n}. ` η(σi) <: η(τi)

We say C = ⊥ iff C does not have a solution.

Our constraint solver is constructive, that is it η as well as some other useful
information can be extracted from it.

The solver itself is denoted by the letter C. We use notation C + {σ C τ} for
constraint solver C enriched with the inequation σ C τ . We further define:

C + {σ1 C τ1, . . . , σn C τn} ≡ C + {σ1 C τ1}+ . . . + {σn C τn}
C + {σ CBτ} ≡ C + {σ C τ, τ C σ}

Please note that the + operation is not a set theory sum operation, it is a
notion for constraint solver algorithm invocation. Similarly the test C = ⊥ is
also a solver algorithm invocation.

3.2 The Algorithm

We use e as the entire expression we are going to type.
Let Pos(e) be the set of all positions of subexpressions within e. The string

e�p where p ∈ Pos(e) denotes a subexpression of e at the position p, while e[e′]p
denotes e where its subexpression at the position p has been replaced with e′.
4 Common Intermediate Language, a stack based, high–level, typed assembly language

(or bytecode) for the .NET platform. All the .NET compilers target it [11].



We use notation like e�p = let x = e1 in e2 and later pi for i = 1, 2 to
denote position of ei within e5.

We use one type variable for each expression, and denote it αp where p ∈
Pos(e). In addition we have γx where x ∈ I for type variables assigned to
identifiers. We also occasionally use additional type variables of the form βp

k

where p ∈ Pos(e) and k ∈ N.
The algorithm proceeds by evolving the solver C, the expression e and the

set of positions P . It starts with an empty constraint solver, P = Pos(e) and e
as the expression to be typed. It then proceeds according to the inspection rules
listed in Fig. 2.

We shall now define a few helper functions that we will use in the inspection
rules.

Definition 2. The span of type variable in a given solver is the set of type
constructors it can be unified with:

spanC(α) = {k | ∃τ1, . . . , τn. C + {α CBk(τ1, . . . , τn)} 6= ⊥}

Definition 3.

hintC(α) =
if ∃k ∈ spanc(α). ∀k′ ∈ spanc(α). k <: k′ then k
else if ∃k ∈ spanc(α). ∀k′ ∈ spanc(α). k′ <: k then k
else ⊥

hint(α) is our current best guess of what will be assigned to α in the final
solution. As we will see in Sect. 3.5 the hint is easily computable from our
constraint solver representation6.

Definition 4.

fieldsof α
C(k, σ, m) =

〈k′(β), η(τ), τ〉

∣∣∣∣∣∣
k <: k′ ∧ η = [α := β] ∧
C + {σ C k′(β), η(τ) C α} 6= ⊥ ∧
class k′(α) . . . {. . .m : τ . . .} ∈ E


where β are fresh

This function looks for members of k with type compatible with α when accessed
from object of type σ.

Definition 5.

more specificτ
C(σ, 〈σ1, τ1, ρ1〉, 〈σ2, τ2, ρ2)〉 ⇔

C ′ + {τ1 C τ2} = ⊥ ∧ C ′ + {τ2 C τ1} 6= ⊥
where C ′ = C + {σ C σ1, τ1 C τ, σ C σ2, τ2 C τ}

most specificτ
C(σ,A) = {p | p ∈ A ∧ ∀p′ ∈ A. ¬more specificτ

C(σ, p′, p)}
5 Note that it is not the position within e�p .
6 The reader may find it odd that the best choice is happily chosen rather randomly

between the highest and lowest type possible. This function is however used to lookup
members at which point we consider any clue about the type to be good.



(C, P ∪ {p}, e)  (C + {γx CBαp}, P, e)
when:

e�p = x

(C, P ∪ {p}, e)  
(C + {αp CBτ, αp1 C σ},
P, e[e1.m

ρ]p)

when:
e�p = e1.m
member

αp

C (αp1 , m) = 〈σ, τ, ρ〉
O(p) = ⊥

(C, P ∪ {p}, e)  
(C + {αp0 CB(βp

1 , . . . , βp
n) → αp,

αp1 C βp
1 , . . . , αpn C βp

n
},

P, e)

when:
e�p = e0(e1, . . . , en)

(C, P ∪ {p}, e)  
(C + {αp CB(γx1 , . . . , γxn) → αp1},
P, e[λ(x1 : γx1 , . . . , xn : γxn). e1]p)

when:
e�p = λ(x1, . . . , xn). e1

(C, P ∪ {p}, e)  (C + {γx CBαp1 , αp CBαp2}, P, e)
when:

e�p = let x = e1 in e2

(C, P ∪ {p}, e)  
(C + {αp CBk(βp

1 , . . . , βp
n)},

P, e[new αp]p)

when:
e�p = new k
class k(α1, . . . , αn) . . . ∈ E

Fig. 2. Inspection rules

The functions above are used for finding the most appropriate overload. They
choose the less general type as “better” because the → type constructor is con-
travariant on the left hand side – so the actual function types chosen are the
ones with most specific argument types.

If desired the rules above can be restricted to compare only function types
and possibly only at the argument positions.

Definition 6.

memberτ
C(σ,m) = most specificτ

C(σ,fieldsof τ
C(hintC(σ), σ, m))

Finally the member function returns a set of appropriate member access reso-
lutions when accessing m on σ. We furthermore require the field to have type τ
in the solver C.

If by applying inspection rules we reach the state (C, ∅, e) for some e and
C 6= ⊥, then we say that the type inference algorithm has succeeded, and the
result is e, with the solution η of C applied to all the types contained in e.

If the algorithm reaches the state (C,P, e) where C 6= ⊥, P 6= ∅ and no rule
can be applied, then the algorithm is said to have failed because of ambiguity.

If the algorithm reaches the state (⊥, P, e), then the algorithm is said to have
failed because of a type clash.



3.3 Examples

In the example below we assume the following environment:

class Animal() {
legs : () → Int()

}
class Dog() : Animal() {}
class Cat() : Animal() {}

class Int() {}
class Set(α) {

add : (α) → Set(α)
}

Let us now consider following piece of source program:

let s1 = new Set in
let s2 = s1.add(new Dog) in
let s3 = s2.add(new Cat) in
s3

To see how the typing proceeds we show state of the constraint solver after
typing each line of the input. We only show parts describing types of local
variables as the are probably the most interesting. The first line results in:

{γs1 CBSet(β1)}

then s1.add member access adds: {γs1 C Set(β2), αs1.add CBβ2 → Set(β2)} and
calling this member adds: {Dog() C β1, γs2 CBSet(β2)} so the current state is:

{γs1 CBSet(β1), γs2 CBSet(β1), Dog() C β1}

next the third line adds: {γs2 CSet(β3), Cat()Cβ3, γs3 CBSet(β3)} so the current
state is:

{γs1 CBSet(β1), γs2 CBSet(β1), γs3 CBSet(β1), Dog() C β1, Cat() C β1}

which finally results in:

{γs1 CBSet(β1), γs2 CBSet(β1), γs3 CBSet(β1), Animal() C β1}

As we can see the type of s1 got generalized to Set(Animal()), even though it is
not a subtype of Set(Dog()). We can now consider a more “delayed” example:

let f = λ(x). x.legs in
f(new Cat)

In this example typing fail to cope with the lambda expression (actually some
constraints can be produced, but they are not very reasonable). We therefore
first proceed with the second line obtaining:

{αnew Cat CBCat(), γf CB(β4) → αf(new Cat), Cat() C β4}

so we can go back to the lambda expression and add β4 CBγx which makes hint
return Cat on γx. This allows typing member access on x, which adds: {αx.legs C
BInt(), γx CAnimal()}. So the type assigned to f is between Animal() → Int()
and Cat() → Int(). If we would use f again on Dog(), the type would get strictly
Animal() → Int().



Γ, x : τ ` x : τ Γ ` new τ : τ

Γ ` e1 : τ Γ, x : τ ` e2 : σ

Γ ` let x = e1 in e2 : σ

Γ, x1 : τ1, . . . , xn : τn ` e1 : τ

Γ ` λ(x1 : τ1, . . . , xn : τn). e1 : (τ1, . . . , τn) → τ

Γ ` e0 : (τ1, . . . , τn) → σ Γ ` e1 : τ ′
1 ` τ ′

1 <: τ1 . . . Γ ` en : τ ′
n ` τ ′

n <: τn

Γ ` e0(e1, . . . , en) : σ

Γ ` e1 : σ ` σ <: k(ρ) class k(α) . . . {. . . m : τ . . .} ∈ E θ = [α := ρ]

Γ ` e1.mτ : θ(τ)

Fig. 3. Typing rules for ET .

3.4 Soundness

We will now define what do we mean by well–typed expressions. We are not going
to prove subject reduction, as we are not interested directly in the dynamic
safety of the code. We are however interested in the static property of CIL
being verifiable. The .NET standard [11] specifies the subset of CIL that can be
statically type checked, and is thus safe to execute. It is called verifable CIL.
Our typing rules for ET are an ad–hoc translation of these rules to our model of
CIL. The rules are however pretty straightforward. They are listed in Fig. 3

First we can observe, that if e′ is a result of a successful run of the type
inference algorithm on e, then e is e′ with additional type information erased.
So the algorithm returns the same program, but typed. Now we can state validity
of the output:

Theorem 1. (soundness): If e′ is a result of a successful run of the type infer-
ence algorithm on e, then e′ is a verifiable typed expression.

Proof. Let (C, ∅, e′) be the final configuration in the algorithm run. Let η be
the solution of C. We will construct a proof of Γ ` e′ : η(αε), where ε is a
root position (e�ε = e), and Γ = {x : η(γx) | x ∈ I occurs in e′}. Moreover
the environments in all the subtrees of the proof will be the same. This proof
can be easily converted to the form where ∅ ` e′ : η(αε) is at the root, because
identifiers are unique and occur only in their respective scopes.

Lemma 1. For any p ∈ Pos(e′) a proof can be constructed with Γ ` e′�p : η(αp)
in the root.

The proof of the lemma is by induction on the structure of e′. All the cases
are straightforward. We show the reasoning for member access as it is proba-
bly syntactically the most complicated. We have e′ �p = e1.m

τ . The member
function returns one of the tuples returned by the fieldsof function, let’s call it
〈k′(β), η′(τ), τ〉. By fieldsof definition we have class k′(α) . . . {. . .m : τ . . .} ∈
E and η′ = [α := β]. By solver validity ` η(αp1) <: η(k′(β)), and by induction



hypothesis Γ ` e1 : η(αp1), so the θ from the typing rule is really θ = [α := η(β)].
The final type assigned in the rule is then θ(η(τ)) which equals η(η′(τ)), which
by solver validity equals η(αp). ut

3.5 The Constraint Solver Implementation

We have already specified the solver interface in Sect. 3.1. This section sketches
its implementation.

State Description The state of the constraint solver consists of a relation R
and two functions: ·↑ and ·↓.

The relation R ⊆ V×V represents subtyping relations to be enforced on type
variables (V is the set of type variables defined in Sect. 2).

Upper and lower limits on types assigned to given type descriptor in the final
solutions are represented by the functions ·↑ : V → T and ·↓ : V → T . The idea
is that the limits tighten the space of possible solutions until they eventually
meet. These functions are also used for computing the hint function.

The state of constraints solver is a triple Q = (R, ·↑, ·↓).
One can think about the solver as a directed graph (V,R) where additionally

each vertex has upper and lower constraints. Each incoming constraint is de-
composed into relations on type variables and possibly additional restrictions on
upper and lower bounds. This decomposition makes sure that any substitution
η fulfilling the following conditions in Q:

(1) ∀α ∈ V. ` η(α↑) <: η(α) ∧ ` η(α) <: η(α↓)
(2) ∀(α, β) ∈ R. ` η(α) <: η(β)

is a solution of Q.
If the constraint being added is α C k(τ) (k(τ) C α), then we replace the

previous lower (upper) limit with its intersection (sum) with k(τ). For constraints
of the form k1(τ) C k2(σ) we lookup appropriate axiom and add constraints on
τ and σ.

We use conservative approximations for sum and intersection types – it is
respectively a common superclass and smaller of the two types (if such smaller
type does not exists, we treat this as an error). This is one of reasons our con-
straint solver is not complete. We have however not found this to be a problem
in practice.

Normalized Solver We say a solver Q = (R, ·↑, ·↓) is in normalized form if it
fulfills the following conditions:

1. the directed graph (V, R) is closed with respect to transitivity and reflexivity,
that is R is a partial preorder on V,

2. ∀α. Q + {α↑ C α↓} = Q,
3. ∀(α, β) ∈ R. Q + {α↑ C β↑, α↓ C β↓} = Q.



If the above constraints are fulfilled then taking ·↑ or ·↓ as η will result in a
proper solution.

The conditions above are maintained as invariants by simply adding con-
straints enforced by them in a fix point fashion.

3.6 Syntax Tree Inspection Order

The reader can note that the result of our algorithm depends on particular
ordering of syntax tree inspection. But choosing the proper ordering is NP–hard
(see proof in the appendix).

So while some heuristics may be invented here – they are not going to be
simple. And because it is good for the programmer to understand what static
type is a given expression going to have – any heuristic should be understandable
by the programmer.

The easiest option here was to inspect the tree in a linear source code order.
This is what we did – we first apply typing rules storing yet unresolved member
access nodes in a simple FIFO queue. Next we try to type each member access
in the queue, returning member accesses to it, if we still do not have enough
information. We repeat this process until no more member accesses can be typed.
If the queue is empty, the algorithm has succeeded, otherwise user needs to
annotate member access to resolve ambiguity.

The linear inspection ordering also gives overload resolutions quite close to
what the C# compiler would choose, when type annotations are specified. This
is important, because programmers are likely to specify types explicitly if they
relay on particular overload being chosen.

4 Complexity and the Implementation

It is easy to observe that the types can become exponentially big during type
inference. It is possible, this can be cured using some kind of DAG’s to represent
types. Our implementation does not employ this method though. We have found
that programmers do not write program with exponential types, which is much
like the situation in ML [20]. Therefore the types stay at a reasonable size.

Practical experimentation shows the presented type inference scheme to be
no more than two times slower compared to Cardelli’s greedy inference [3]. This
seems acceptable as the the inference process accounts for only about 30% of
the compiler running time.

Of course the performance depends very much on the implementation. The
initial one was several times slower, mainly due to the excessive amount of tem-
porary type variables generated. Employing special cases for type variables that
are only going to be unified with something else (as opposed to having proper
upper and lower bounds) helped here enormously. Another problem with the
implementation was related to the fact that we require the constraint solver to
have a cheap copy operation (we sometimes use shallow backtracking, so the
state needs to restored after failure). This was first achieved using a mainly



functional implementation. Switching to an imperative one with sophisticated
copy–on–write tricks also helped with the performance.

5 Contributions

The main contribution of this paper is a practical application of the idea of infer-
ring types in non–source–code order. Instead of the usual approach of analyzing
the code in a linear order and possibly deferring some checks for later, we defer
entire typing process of some syntax tree nodes. We have found this approach
to work quite well in practice.

A very important advantage of this deferral technique compared to collecting
constraints on types and resolving them later is extensibility. The Nemerle lan-
guage can be extended by the user through pluggable compiler modules (macros),
run during the typing process.

For example the foreach loop (used to iterate over a collection) is added
this way. It can emit several special–case implementations for particular data
structures (like list or arrays) and a default implementation for classes supporting
the IEnumerable interface. So when the foreach macro is executed, and at this
point of the typing process the type of the collection is not yet known, we would
need to just fall back to the default (less efficient) implementation. However
instead, the macro can defer its execution for later, when the type will be known.

The macro can also handle error reporting itself. When we discover that no
new expression was resolved during a deferred typing queue run, we ask the first
deferred typing (which also happens to be the first one in textual program order)
to display an error message. This way it is simple and readable to the user, for
example “cannot determine the type of collection, please specify it”, instead of
something like “constraint x of α is not fulfilled”.

Nemerle supports several different kinds of members (fields, properties, in-
dexers, methods), which all have some kind of special access and overloading
resolution rules. In addition we have named parameters and implicit conver-
sions, which also complicate things. In such a rich environment we found the
flexibility given by the deferral technique quite appealing.

There are of course also disadvantages of this approach. We immediately
loose principal types property (the type of function clearly depends on use site,
therefore it cannot have any principal type itself). There are problems with
generalizing function types, to make them polymorphic – we never know if some
deferred computation can place some additional constraint on type variables
that were just generalized. This is however an area of future research.

It is possible to extend the technique presented to use type schemes instead
of types for member types, it is also possible to include possibly recursive lower
bounds on type variables (which results in an implementation of F-bounded
polymorphism [2]). However both features only obscure the notation and don’t
introduce anything new to the algorithm. They are however both present in the
real implementation.



6 Related Work

Various type inference mechanisms are used in a wide variety of programming
languages. Most them are research languages, but some have a wide audience,
particularly languages of the ML family, like Standard ML [14], OCaml [13] and
Haskell [12], but also by some implementations of dynamic languages for stat-
ically typed runtime environments like IronPython [9] and Boo [5]. The best
known algorithm of type inference is the W algorithm [4]. It deals with para-
metric polymorphism and functional values, and with certain extensions with
imperative features.

Probably the simplest mutation of the W algorithm to deal with subtyping
is Cardelli’s greedy algorithm [3]. It simply unifies variables as soon as possible
without any possibility of using subtyping there. It as used as a basis of previous
Nemerle inference engine.

Type inference is in general very well explored topic – for an up to date review
of extensions here we refer the reader to [18]. However the area of nominal type
systems with subtyping and parametric polymorphism (like the one in Generic
Java [1] and C# 2.0 [10] [11]) occupies only a small fraction of research efforts.
Moreover practical implementations are in short supply here. Works worth men-
tioning in this context include using global constraint solving for adding generic
type annotations in Java bytecode [6] and techniques of local type inference [17]
with extensions [16] [7] used in the Scala [15] programming language.

7 Future Work

The algorithm we have presented does not infer polymorphic types (it simply
fails with a type clash when a function intended to be polymorphic is used for
the second time with different types of the arguments). It can however handle
polymorphic types with explicit annotations. It is an open question if it can be
extended to infer polymorphic types in some cases.

We have proven NP–hardness of overloading in our system. However it can
be possible to develop some better, simple heuristics here.

There are some techniques for improving error messages, like removal of less–
certain constraints from the solver in place of an error in spirit of [8].
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8 Appendix: NP–Hardness of Syntax Tree Ordering

Theorem 2. Choosing a syntax tree inspection order for which the typing will
not fail is an NP–hard problem.

Proof. We will encode a 3SAT problem in a program. The program will have
a proper typing in a type system we have shown iff the corresponding 3SAT
instance has a solution.

We need the following environment:

class F () {}
class T () : F () {}
class Ops() {

neg : (T ()) → F () neg : (F ()) → T ()
or : (T (), F (), F ()) → T () or : (T (), T (), F ()) → T ()
or : (F (), T (), F ()) → T () or : (T (), F (), T ()) → T ()
or : (F (), F (), T ()) → T () or : (F (), T (), T ()) → T ()
or : (T (), T (), T ()) → T ()

}

We will now construct an expression e for a 3SAT formulae Ψ . We start by
adding:

let ops = new Ops in

to e. Now for each variable v ∈ FV (Ψ) we add the following piece of program
to e:

let pv = ops.neg(new T ) in
let nv = ops.neg(pv) in

Then we define a function ·̂ from literals in Ψ to V , such that:

q̂ = pq ¬̂q = nq

Now for each clause ci = (l1 ∨ l2 ∨ l3) where li are literals we add the following
line to e:

let dummyi = ops.or(l̂1, l̂2, l̂3) in

Finally, after last in we add ops.
Now the expression e posses a proper typing iff the corresponding 3SAT

instance has a solution.
The crucial NP–hard choice is if we first type ops.neg(new T ) or ops.neg(pv).

In the first case pv will get type F (), as the most specific overload of neg will be
chosen. Otherwise it will get type T (), because the most specific overload will
be chosen in the second neg invocation and the restriction on return type of the
first one will be placed. The proof is a straightforward encoding argument7. ut

7 The overloading resolution has been even proven undecidable in a less restricted
environment [19].


