
Co-induction Simply
Automatic Co-inductive Proofs in a Program Verifier

K. Rustan M. Leino and Michał Moskal

Microsoft Research, Redmond, WA, USA
{leino,micmo}@microsoft.com

Abstract. This paper shows that an SMT-based program verifier can support rea-
soning about co-induction—handling infinite data structures, lazy function calls,
and user-defined properties defined as greatest fix-points, as well as letting users
write co-inductive proofs. Moreover, the support can be packaged to provide a
simple user experience. The paper describes the features for co-induction in the
language and verifier Dafny, defines their translation into input for a first-order
SMT solver, and reports on some encouraging initial experience.

0 Introduction

Mathematical induction is a cornerstone of programming and program verification. It
arises in data definitions (e.g., some algebraic data structures can be described using in-
duction [4]), it underlies program semantics (e.g., it explains how to reason about finite
iteration and recursion [1]), and it gets used in proofs (e.g., supporting lemmas about
data structures use inductive proofs [16]). Whereas induction deals with finite things
(data, behavior, etc.), its dual, co-induction, deals with possibly infinite things. Co-
induction, too, is important in programming and program verification, where it arises
in data definitions (e.g., lazy data structures [31]), semantics (e.g., concurrency [29]),
and proofs (e.g., showing refinement in a co-inductive big-step semantics [22]). It is
thus desirable to have good support for both induction and co-induction in a system for
constructing and reasoning about programs.

Dramatic improvements in satisfiability-modulo-theories (SMT) solvers have brought
about new levels of power in automated reasoning. Some program verifiers and inter-
active proof assistants have used this power to reduce the amount of human interaction
needed to achieve results (e.g., [12,8,17,5]). In this paper, we introduce the first SMT-
based verifier to support co-induction.

The verifier is for programs written in the verification-aware programming lan-
guage Dafny [17],0 which we extend with co-inductive features. Co-datatypes and
co-recursive functions make it possible to use lazily evaluated data structures (like
in Haskell [31] or Agda [27]). Co-predicates, defined by greatest fix-points, let pro-
grams state properties of such data structures (as can also be done in, for example,
Coq [3]). For the purpose of writing co-inductive proofs in the language, we intro-
duce co-lemmas. Ostensibly, a co-lemma invokes the co-induction hypothesis much

0 Dafny is an open-source project at http://dafny.codeplex.com.

http://dafny.codeplex.com

// infinite streams

codatatype IStream〈T〉 = ICons(head: T, tail: IStream)

// pointwise product of streams

function Mult(a: IStream〈int〉, b: IStream〈int〉): IStream〈int〉
{ ICons(a.head * b.head, Mult(a.tail, b.tail)) }

// lexicographic order on streams

copredicate Below(a: IStream〈int〉, b: IStream〈int〉)
{ a.head ≤ b.head ∧ (a.head = b.head =⇒ Below(a.tail, b.tail)) }

// a stream a Below its Square

colemma Theorem_BelowSquare(a: IStream〈int〉)
ensures Below(a, Mult(a, a));

{ assert a.head ≤ Mult(a, a).head;

if a.head = Mult(a, a).head { Theorem_BelowSquare(a.tail); } }

// an incorrect property and a bogus proof attempt

colemma NotATheorem_SquareBelow(a: IStream〈int〉)
ensures Below(Mult(a, a), a); // ERROR

{ NotATheorem_SquareBelow(a); }

Fig. 0. A taste of how the co-inductive features in Dafny come together to give straightforward
definitions of infinite matters. The proof of the theorem stated by the first co-lemma lends itself
to the following intuitive reading: To prove that a is below Mult(a, a), check that their heads
are ordered and, if the heads are equal, also prove that the tails are ordered. The second co-lemma
states a property that does not always hold; the verifier is not fooled by the bogus proof attempt
and instead reports the property as unproved. wJHo »1

like an inductive proof invokes the induction hypothesis. Underneath the hood, our
co-inductive proofs are actually approached via induction [24]: co-lemmas provide a
syntactic veneer around this approach. We are not aware of any other proof assistant
with co-inductive constructs that takes this approach.

These language features and the automation in our SMT-based verifier combine to
provide a simple view of co-induction. As a sneak peek, consider the program in Fig. 0.1

It defines a type IStream of infinite streams, with constructor ICons and destructors
head and tail. Function Mult performs pointwise multiplication on infinite streams
of integers, defined using a co-recursive call (which is evaluated lazily). Co-predicate
Below is defined as a greatest fix-point, which intuitively means that the co-predicate
will take on the value true if the recursion goes on forever without determining a dif-
ferent value. The co-lemma states the theorem Below(a, Mult(a, a)). Its body gives
the proof, where the recursive invocation of the co-lemma corresponds to an invocation
of the co-induction hypothesis.

We argue that these definitions in Dafny are simple enough to level the playing
field between induction (which is familiar) and co-induction (which, despite being the
dual of induction, is often perceived as eerily mysterious). Moreover, the automation
provided by our SMT-based verifier reduces the tedium in writing co-inductive proofs.
For example, it verifies Theorem_BelowSquare from the program text given in Fig. 0—
no additional lemmas or tactics are needed. (This is true throughout the paper—the

1 The examples in the figures can be tried and tweaked online at the following address: http:
//rise4fun.com/Dafny/id where id (e.g., wJHo) is provided below every figure.

http://rise4fun.com/Dafny/wJHo
http://rise4fun.com/Dafny/
http://rise4fun.com/Dafny/

verifier works from the given program text and does not require or accept any other
input.) In fact, as a consequence of the automatic-induction heuristic in Dafny [18], the
verifier will automatically verify Theorem_BelowSquare even given an empty body.

Just like there are restrictions on when an inductive hypothesis can be invoked, there
are restriction on how a co-inductive hypothesis can be used. These are, of course, taken
into consideration by our verifier. For example, as illustrated by the second co-lemma
in Fig. 0, invoking the co-inductive hypothesis in an attempt to obtain the entire proof
goal is futile. (We explain how this works in Sec. 2.1.)

Our initial experience with co-induction in Dafny shows it to provide an intuitive,
low-overhead user experience that compares favorably to even the best of today’s in-
teractive proof assistants for co-induction. In addition, the co-inductive features and
verification support in Dafny have other potential benefits. The features are a stepping
stone for verifying functional lazy programs with Dafny. Co-inductive features have
also shown to be useful in defining language semantics, as needed to verify the correct-
ness of a compiler [22], so this opens the possibility that such verifications can benefit
from SMT automation.

0.0 Contributions

– First SMT-based verifier for reasoning about co-induction.
– Language design that blends inductive and co-inductive features, allowing both

recursive and co-recursive calls to the same function (Sec. 1).
– User-callable prefix predicates—finite unfoldings of co-predicates used to establish

co-predicates via induction (Secs. 1.3 and 4).
– Extension of the technique of writing inductive proofs as programs (see [18]) to

co-inductive proofs using co-lemmas (Sec. 2). Unlike tactic-based systems, these
programs show the high-level structure of the (inductive and co-inductive) proofs.
Yet the automation provided by the SMT solver makes it unnecessary to manually
author the proof terms.

– Low-overhead tool-supported way to write and learn about co-inductive proofs (see
examples in Sec. 3).

1 Co-inductive Definitions

In this section and the next, we describe the design of our co-inductive extension of
Dafny. We start with the constructs for defining types, values, and properties of possibly
infinite data structures. Though we will hint at how our design compares to the existing
design for inductive constructs, space constraints prevent us from giving the details of
those; to learn more, see [18,20].

1.0 Background

The Dafny programming language supports functions and methods. A function in Dafny
is a mathematical function (i.e., it is well-defined, deterministic, and pure), whereas a
method is a body of statements that can mutate the state of the program. A function

is defined by its given body, which is an expression. To ensure that function defini-
tions are mathematically consistent, Dafny insists that recursive calls be well-founded,
enforced as follows: Dafny computes the call graph of functions. The strongly con-
nected components within it are clusters of mutually recursive definitions arranged in
a DAG. This stratifies the functions so that a call from one cluster in the DAG to a
lower cluster is allowed arbitrarily. For an intra-cluster call, Dafny prescribes a proof
obligation that gets taken through the program verifier’s reasoning engine. Semanti-
cally, each function activation is labeled by a rank—a lexicographic tuple determined
by evaluating the function’s decreases clause upon invocation of the function. The
proof obligation for an intra-cluster call is thus that the rank of the callee is strictly less
(in a language-defined well-founded relation) than the rank of the caller [17]. Because
these well-founded checks correspond to proving termination of executable code, we
will often refer to them as “termination checks”. The same process applies to methods.

Lemmas in Dafny are commonly introduced by declaring a method, stating the
property of the lemma in the postcondition (keyword ensures) of the method, perhaps
restricting the domain of the lemma by also giving a precondition (keyword requires),
and using the lemma by invoking the method [14,18]. Lemmas are stated, used, and
proved as methods, but since they have no use at run time, such lemma methods are
typically declared as ghost, meaning that they are not compiled into code. The key-
word lemma introduces such a method. Control flow statements correspond to proof
techniques—case splits are introduced with if statements, recursion and loops are used
for induction, and method calls for structuring the proof. Additionally, the statement:

forall x | P(x) { Lemma(x); }

is used to invoke Lemma(x) on all x for which P(x) holds. If Lemma ensures Q(x), then
the forall statement establishes ∀ x • P(x) =⇒ Q(x).

1.1 Defining Co-inductive Datatypes

Each value of an inductive datatype is finite, in the sense that it can be constructed by
a finite number of calls to datatype constructors. In contrast, values of a co-inductive
datatype, or co-datatype for short, can be infinite. For example, a co-datatype can be
used to represent infinite trees.

Syntactically, the declaration of a co-datatype in Dafny looks like that of a datatype,
giving prominence to the constructors (following Coq [10]). For example, Fig. 1 defines
a co-datatype Stream of possibly infinite lists. Analogous to the common finite list
datatype, Stream declares two constructors, SNil and SCons. Values can be destructed
using match expressions and statements. In addition, like for inductive datatypes, each
constructor C automatically gives rise to a discriminator C? and each parameter of a
constructor can be named in order to introduce a corresponding destructor. For example,
if xs is the stream SCons(x , ys), then xs .SCons? and xs .head =x hold. In contrast
to datatype declarations, there is no grounding check for co-datatypes—since a co-
datatype admits infinite values, the type is nevertheless inhabited.

codatatype Stream〈T〉 = SNil | SCons(head: T, tail: Stream)

function Up(n: int): Stream〈int〉 { SCons(n, Up(n+1)) }

function FivesUp(n: int): Stream〈int〉
decreases 4 - (n - 1) % 5;

{ if n % 5 = 0 then SCons(n, FivesUp(n+1)) else FivesUp(n+1) }

Fig. 1. Stream is a co-inductive datatype whose values are possibly infinite lists. Function Up

returns a stream consisting of all integers upwards of n and FivesUp returns a stream consisting
of all multiples of 5 upwards of n . The self-call in Up and the first self-call in FivesUp sit in
productive positions and are therefore classified as co-recursive calls, exempt from termination
checks. The second self-call in FivesUp is not in a productive position and is therefore subject
to termination checking; in particular, each recursive call must decrease the rank defined by the
decreases clause. CplhV »

1.2 Creating Values of Co-datatypes

To define values of co-datatypes, one could imagine a “co-function” language feature:
the body of a “co-function” could include possibly never-ending self-calls that are in-
terpreted by a greatest fix-point semantics (akin to a CoFixpoint in Coq). Dafny uses a
different design: it offers only functions (not “co-functions”), but it classifies each intra-
cluster call as either recursive or co-recursive. Recursive calls are subject to termination
checks [17]. Co-recursive calls may be never-ending, which is what is needed to define
infinite values of a co-datatype. For example, function Up(n) in Fig. 1 is defined as the
stream of numbers from n upward: it returns a stream that starts with n and continues
as the co-recursive call Up(n + 1).

To ensure that co-recursive calls give rise to mathematically consistent definitions,
they must occur only in productive positions. This says that it must be possible to de-
termine each successive piece of a co-datatype value after a finite amount of work. This
condition is satisfied if every co-recursive call is syntactically guarded by a constructor
of a co-datatype, which is the criterion Dafny uses to classify intra-cluster calls as being
either co-recursive or recursive. Calls that are classified as co-recursive are exempt from
termination checks.

A consequence of the productivity checks and termination checks is that, even in the
absence of talking about least or greatest fix-points of self-calling functions, all func-
tions in Dafny are deterministic. Since there is no issue of several possible fix-points,
the language allows one function to be involved in both recursive and co-recursive calls,
as we illustrate by the function FivesUp in Fig. 1.

1.3 Stating Properties of Co-datatypes

Determining properties of co-datatype values may require an infinite number of obser-
vations. To that avail, Dafny provides co-predicates. Self-calls to a co-predicate need
not terminate. Instead, the value defined is the greatest fix-point of the given recurrence
equations. Figure 2 defines a co-predicate that holds for exactly those streams whose
payload consists solely of positive integers.

Some restrictions apply. To guarantee that the greatest fix-point always exists, the
(implicit functor defining the) co-predicate must be monotonic. This is enforced by

http://rise4fun.com/Dafny/CplhV

copredicate Pos(s: Stream〈int〉)
{ match s

case SNil ⇒ true
case SCons(x, rest) ⇒ x > 0 ∧ Pos(rest) }

// Automatically generated by the Dafny compiler:

predicate Pos#[_k: nat](s: Stream〈int〉)
decreases _k;

{ if _k = 0 then true else
match s

case SNil ⇒ true

case SCons(x, rest) ⇒ x > 0 ∧ Pos#[_k-1](rest) }

Fig. 2. A co-predicate Pos that holds for those integer streams whose every integer is greater
than 0. The co-predicate definition implicitly also gives rise to a corresponding prefix predicate,
Pos#. The syntax for calling a prefix predicate sets apart the argument that specifies the prefix
length, as shown in the last line; for this figure, we took the liberty of making up a coordinating
syntax for the signature of the automatically generated prefix predicate. eYml »

a syntactic restriction on the form of the body of co-predicates: after conversion to
negation normal form (i.e., pushing negations down to the atoms), intra-cluster calls of
co-predicates must appear only in positive positions—that is, they must appear as atoms
and must not be negated. Additionally, to guarantee soundness later on, we require that
they appear in co-friendly positions—that is, in negation normal form, when they appear
under existential quantification, the quantification needs to be limited to a finite range.2

Since the evaluation of a co-predicate might not terminate, co-predicates are always
ghost. There is also a restriction on the call graph that a cluster containing a co-predicate
must contain only co-predicates, no other kinds of functions.

A copredicate declaration of P defines not just a co-predicate, but also a corre-
sponding prefix predicate P#. A prefix predicate is a finite unrolling of a co-predicate.
The prefix predicate is constructed from the co-predicate by

– adding a parameter _k of type nat to denote the prefix length,
– adding the clause decreases _k; to the prefix predicate (the co-predicate itself is

not allowed to have a decreases clause),
– replacing in the body of the co-predicate every intra-cluster call Q(args) to a co-

predicate by a call Q#[_k − 1](args) to the corresponding prefix predicate, and
then

– prepending the body with if _k = 0 then true else.

For example, for co-predicate Pos, the definition of the prefix predicate Pos# is as
suggested in Fig. 2. Syntactically, the prefix-length argument passed to a prefix predi-
cate to indicate how many times to unroll the definition is written in square brackets, as
in Pos#[k](s). The definition of Pos# is available only at clusters strictly higher than
that of Pos; that is, Pos and Pos# must not be in the same cluster. In other words, the
definition of Pos cannot depend on Pos#.

2 Higher-order function support in Dafny is rather modest and typical reasoning patterns do not
involve them, so this restriction is not as limiting as it would have been in, e.g., Coq.

http://rise4fun.com/Dafny/eYml

lemma UpPosLemma(n: int)
requires n > 0;

ensures Pos(Up(n));

{ forall k | 0 ≤ k { UpPosLemmaK(k, n); } }

lemma UpPosLemmaK(k: nat, n: int)
requires n > 0;

ensures Pos#[k](Up(n));

decreases k;

{ if k 6= 0 {

// this establishes Pos#[k-1](Up(n).tail)

UpPosLemmaK(k-1, n+1); } }

Fig. 3. The lemma UpPosLemma proves Pos(Up(n)) for every n > 0 . We first show
Pos# [k](Up(n)), for n > 0 and an arbitrary k , and then use the forall statement to show
∀ k • Pos# [k](Up(n)). Finally, the axiom D(Pos) is used (automatically) to establish the
co-predicate. d7J3 »

Equality between two values of a co-datatype is a built-in co-predicate. It has the
usual equality syntax s = t , and the corresponding prefix equality is written s =#[k] t .

2 Co-inductive Proofs

From what we have said so far, a program can make use of properties of co-datatypes.
For example, a method that declares Pos(s) as a precondition can rely on the stream s
containing only positive integers. In this section, we consider how such properties are
established in the first place.

2.0 Properties About Prefix Predicates

Among other possible strategies for establishing co-inductive properties (e.g., [13,7,?]),
we take the time-honored approach of reducing co-induction to induction [24]. More
precisely, Dafny passes to the SMT solver an assumption D(P) for every co-predicate
P , where:

D(P) ≡ ∀ x • P(x) ⇐⇒ ∀ k • P#k (x)

In Sec. 4, we state a soundness theorem of such assumptions, provided the co-predicates
meet the co-friendly restrictions from Sec. 1.3. An example proof of Pos(Up(n)) for
every n > 0 is shown in Fig. 3.

2.1 Co-lemmas

As we just showed, with help of the D axiom we can now prove a co-predicate by
inductively proving that the corresponding prefix predicate holds for all prefix lengths
k . In this section, we introduce co-lemma declarations, which bring about two benefits.
The first benefit is that co-lemmas are syntactic sugar and reduce the tedium of having
to write explicit quantifications over k . The second benefit is that, in simple cases, the
bodies of co-lemmas can be understood as co-inductive proofs directly. As an example,

http://rise4fun.com/Dafny/d7J3

colemma UpPosLemma(n: int)
requires n > 0;

ensures Pos(Up(n));

{ UpPosLemma(n+1); }

Fig. 4. A proof of the lemma from Fig. 3 using the syntactic sugar of a co-lemma. Among other
things, the call to UpPosLemma(n+1) is desugared to UpPosLemma#[_k-1](n+1) (which can also
be used directly) and the proof goal is desugared to Pos#[_k](Up(n)). Intuitively, the body of
the co-lemma simply invokes the co-induction hypothesis to complete the proof. Se7h »

consider the co-lemma in Fig. 4, which can be understood as follows: UpPosLemma in-
vokes itself co-recursively to obtain the proof for Pos(Up(n).tail) (since Up(n).tail
equals Up(n+1)). The proof glue needed to then conclude Pos(Up(n)) is provided au-
tomatically, thanks to the power of the SMT-based verifier.

2.2 Prefix Lemmas

To understand why the code in Fig. 4 is a sound proof, let us now describe the details
of the desugaring of co-lemmas. In analogy to how a copredicate declaration defines
both a co-predicate and a prefix predicate, a colemma declaration defines both a co-
lemma and prefix lemma. In the call graph, the cluster containing a co-lemma must
contain only co-lemmas and prefix lemmas, no other methods or function. By decree,
a co-lemma and its corresponding prefix lemma are always placed in the same cluster.
Both co-lemmas and prefix lemmas are always ghosts.

The prefix lemma is constructed from the co-lemma by

– adding a parameter _k of type nat to denote the prefix length,
– replacing in the co-lemma’s postcondition the positive co-friendly occurrences of

co-predicates by corresponding prefix predicates, passing in _k as the prefix-length
argument,

– prepending _k to the (typically implicit) decreases clause of the co-lemma,
– replacing in the body of the co-lemma every intra-cluster call M(args) to a co-

lemma by a call M#[_k − 1](args) to the corresponding prefix lemma, and then
– making the body’s execution conditional on _k 6= 0 .

Note that this rewriting removes all co-recursive calls of co-lemmas, replacing them
with recursive calls to prefix lemmas. These recursive call are, as usual, checked to be
terminating. We allow the pre-declared identifier _k to appear in the original body of
the co-lemma.3

We can now think of the body of the co-lemma as being replaced by a forall call,
for every k , to the prefix lemma. By construction, this new body will establish the co-
lemma’s declared postcondition (on account of the D axiom, which we prove sound in
Sec. 4, and remembering that only the positive co-friendly occurrences of co-predicates
in the co-lemma’s postcondition are rewritten), so there is no reason for the program
verifier to check it.

3 Note, two places where co-predicates and co-lemmas are not analogous are: co-predicates must
not make recursive calls to their prefix predicates, and co-predicates cannot mention _k.

http://rise4fun.com/Dafny/Se7h

The actual desugaring of Fig. 4 is in fact the code from Fig. 3, except that UpPosLemmaK
is named UpPosLemma# and modulo a minor syntactic difference in how the k argument
is passed.

In the recursive call of the prefix lemma, there is a proof obligation that the prefix-
length argument _k − 1 is a natural number. Conveniently, this follows from the fact
that the body has been wrapped in an if _k 6= 0 statement. This also means that the
postcondition must hold trivially when _k = 0 , or else a postcondition violation will
be reported. This is an appropriate design for our desugaring, because co-lemmas are
expected to be used to establish co-predicates, whose corresponding prefix predicates
hold trivially when _k = 0 . (To prove other predicates, use an ordinary lemma, not a
co-lemma.)

It is interesting to compare the intuitive understanding of the co-inductive proof in
Fig. 4 with the inductive proof in Fig. 3. Whereas the inductive proof is performing
proofs for deeper and deeper equalities, the co-lemma can be understood as producing
the infinite proof on demand.

2.3 Automation

Because co-lemmas are desugared into lemmas whose postconditions benefit from in-
duction, Dafny’s usual induction tactic kicks in [18]. Effectively, it adds a forall state-
ment at the beginning of the prefix lemma’s body, invoking the prefix lemma recursively
on all smaller tuples of arguments. Typically, the useful argument tuples are those with a
smaller value of the implicit parameter _k and any other values for the other parameters,
but the forall statement will also cover tuples with the same _k and smaller values of
the explicit parameters.

Thanks to the induction tactic, the inductive lemma UpPosLemmaK from Fig. 3 is
verified automatically even if it is given an empty body. So, co-lemma UpPosLemma in
Fig. 4 is also verified automatically even if given an empty body—it is as if Dafny had
a tactic for automatic co-induction as well.

3 More Examples

In this section, we further illustrative what can easily be achieved with our co-induction
support in Dafny. We use examples that other treatments of co-induction have used
or offered as challenges. We give links to these examples online (cf. Footnote 1), but
also point out that most of the examples are also available in the Dafny test suite (see
Footnote 0).

Zip Figure 5 states a few properties of the zip function on infinite streams. (See the
figure caption for a more detailed description.)

Wide Trees Figure 6 shows a definition of trees with infinite width but finite height.

codatatype IStream〈T〉 = ICons(head: T, tail: IStream)

function zip(xs: IStream, ys: IStream): IStream

{ ICons(xs.head, ICons(ys.head, zip(xs.tail, ys.tail))) }

function even(xs: IStream): IStream { ICons(xs.head, even(xs.tail.tail)) }

function odd(xs: IStream): IStream { even(xs.tail) }

function bzip(xs: IStream, ys: IStream, f: bool) : IStream

{ if f then ICons(xs.head, bzip(xs.tail, ys, ¬f))
else ICons(ys.head, bzip(xs, ys.tail, ¬f)) }

colemma EvenOddLemma(xs: IStream)

ensures zip(even(xs), odd(xs)) = xs;

{ EvenOddLemma(xs.tail.tail); }

colemma EvenZipLemma(xs: IStream, ys: IStream)

ensures even(zip(xs, ys)) = xs;

{ /* Automatic. */ }

colemma BzipZipLemma(xs: IStream, ys: IStream)

ensures zip(xs, ys) = bzip(xs, ys, true);
{ BzipZipLemma(xs.tail, ys.tail); }

Fig. 5. Some standard examples of combining and dividing infinite streams (cf. [11]). The proof
of EvenZipLemma is fully automatic, whereas the others require a single recursive call to be made
explicitly. The forall statement inserted automatically by Dafny’s induction tactic is in princi-
ple strong enough to prove each of the three lemmas, but the incompleteness of reasoning with
quantifiers in SMT solvers makes the explicit calls necessary. wq7Y »

FivesUp The function FivesUp defined in Fig. 1 calls itself both recursively and co-
recursively. To prove that FivesUp(n) satisfies Pos for any positive n requires the use
of induction and co-induction together (which may seem mind boggling). We give a
simple proof in Fig. 7.

Recall that the decreases clause of the prefix lemma implicitly starts with _k, so
the termination check for each of the recursive calls passes: the first call decreases _k,
whereas the second call decreases the expression given explicitly. We were delighted
to see that the decreases clause (copied from the definition of FivesUp) is enough of
a hint to Dafny; it needs to be supplied manually, but the body of the co-lemma can in
fact be left empty.

Filter The central issue in the FivesUp example is also found in the more useful filter
function. It has a straightforward definition in Dafny:

function Filter(s: IStream): IStream
requires AlwaysAnother(s);
decreases Next(s);

{ if P(s.head) then ICons(s.head, Filter(s.tail)) else Filter(s.tail) }

In the else branch, Filter calls itself recursively. The difficulty is proving that this
recursion terminates. In fact, the recursive call would not terminate given an arbitrary
stream; therefore, Filter has a precondition that elements satisfying P occur infinitely
often. To show progress toward the subsequent element of output, function Next counts
the number of steps in the input s until the next element satisfying P.

http://rise4fun.com/Dafny/wq7Y

datatype Tree = Node(children: Stream〈Tree〉)
predicate IsFiniteHeight(t: Tree) { ∃ n • 0 ≤ n ∧ LowerThan(t.children, n) }

copredicate LowerThan(s: Stream〈Tree〉, n: nat)
{ match s

case SNil ⇒ true
case SCons(t, tail) ⇒
1 ≤ n ∧ LowerThan(t.children, n-1) ∧ LowerThan(tail, n) }

Fig. 6. By itself, the datatype declaration Tree will allow structures that are infinite in height (the
situation in Agda is similar [0]). In Dafny, the part of a Tree that can be inducted over is finite, in
fact of size just 1 (for more details of such induction, see [20]). To describe trees that are possibly
infinite only in width (that is, with finite height, but each node having a possibly infinite number
of children), we declare a predicate IsFiniteHeight. The use of a predicate to characterize an
interesting subset of a type is typical in Dafny (also in the imperative parts of the language; for
example, class invariants are just ordinary predicates [17]). nU5e »

colemma FivesUpPos(n: int)
requires n > 0;

ensures Pos(FivesUp(n));

decreases 4 - (n - 1) % 5;

{ if n % 5 = 0 { FivesUpPos#[_k-1](n + 1); }

else { FivesUpPos#[_k](n + 1); } }

Fig. 7. A proof that, for any positive n , all values in the stream FivesUp(n) are positive. The
proof uses both induction and co-induction. To illustrate what is possible, we show both calls as
explicitly targeting the prefix lemma. Alternatively, the first call could have been written as a call
FivesUpPos(n + 1) to the co-lemma, which would desugar to the same thing and would more
strongly suggest the intuition of appealing to the co-inductive hypothesis. 7hNCq »

The full example [19] defines the auxiliary functions and proves some theorems
about Filter, see 8oeR ». The filter function has also been formalized (with more effort)
in other proof assistants, for example by Bertot in Coq [2].

Iterates In a paper that shows co-induction being encoded in the proof assistant Is-
abelle/HOL, Paulson [30] defines a function Iterates(f, M) that returns the stream

M , f (M), f 2(M), f 3(M), . . .

In Dafny syntax, the function is defined as

function Iterates〈A〉(M: A): Stream〈A〉 { SCons(M, Iterates(f(M))) }

Paulson defines a function Lmap:

function Lmap(s: Stream): Stream
{ match s
case SNil ⇒ SNil
case SCons(a, tail) ⇒ SCons(f(a), Lmap(tail)) }

and proves that any function h satisfying h(M) = SCons(M, Lmap(h(M))) is indeed the
function Iterates. This proof and all other examples from Paulson’s paper can be done
in Dafny, see iplnx ».

http://rise4fun.com/Dafny/nU5e
http://rise4fun.com/Dafny/7hNCq
http://rise4fun.com/Dafny/8oeR
http://rise4fun.com/Dafny/iplnx

codatatype RecType = Bottom | Top | Arrow(dom: RecType, ran: RecType)

copredicate Subtype(a: RecType, b: RecType)

{

a = Bottom ∨
b = Top ∨
(a.Arrow? ∧ b.Arrow? ∧ Subtype(b.dom, a.dom) ∧ Subtype(a.ran, b.ran))

}

colemma Subtype_Is_Transitive(a: RecType, b: RecType, c: RecType)

requires Subtype(a, b) ∧ Subtype(b, c);

ensures Subtype(a, c);

{

if a 6= Bottom ∧ c 6= Top {

Subtype_Is_Transitive(c.dom, b.dom, a.dom);

Subtype_Is_Transitive(a.ran, b.ran, c.ran);

}

}

Fig. 8. A definition of subtyping among recursive types. The co-lemma proves the subtype rela-
tion to be transitive.

Recursive Types Kozen and Silva also argue that the playing field between induction
and co-induction can be leveled [?]. We have encoded all their examples in Dafny, see
yqel », and show one of them in Fig. 8.

Big-step semantics Leroy [21] defines a co-inductive big-step semantics for the λ -
calculus as follows:

λx .m
co
=⇒ λx .m

(id)
m0

co
=⇒ λx .m ′ m1

co
=⇒ n ′ m ′[x := n ′]

co
=⇒ n

m0m1
co
=⇒ n

(beta)

The double lines indicate that the proof tree is allowed to be infinite, with a greatest
fix-point semantics. The intention is that if evaluation of m does not terminate, then
∀n • m

co
=⇒ n . Figure 9 gives the corresponding definition in Dafny.

4 Soundness

In this section, we formalize and prove the connection between co-predicates and prefix
predicates. More precisely, we state a theorem that ∀ k • P#k (x) is the greatest fix-
point solution of the equation defining P(x) .

Consider a given cluster of co-predicate definitions, that is, a strongly connected
component of co-predicates:

Pi(xi) = Ci for i = 0 . . .n (0)

The right-hand sides (Ci) can reference functions, co-predicates, and prefix predicates
from lower clusters, as well as co-predicates (Pj) in the same cluster. According to our
restrictions in Sec. 1.3, the cluster contains only co-predicates, no prefix predicates or

http://rise4fun.com/Dafny/yqel

datatype Term = Var(idx: nat) | Fun(Term) | App(m0: Term, m1: Term)
codatatype PreProof = Id | Beta(m: Term, n: Term, a: PreProof, b: PreProof, c: PreProof)
copredicate IsProof(m: Term, n: Term, d: PreProof)

{ match d

case Id ⇒ m.Fun? ∧ m = n

case Beta(m’, n’, a, b, c) ⇒ m.App? ∧ IsProof(m.m0, Fun(m’), a) ∧
IsProof(m.m1, n’, b) ∧ IsProof(Subst(m’, 0, n’), n, c) }

predicate Eval(m: Term, n: Term) { ∃ d • IsProof(m, n, d) }

// ERROR - Eval’ used in non-co-friendly position

copredicate Eval’(m: Term, n: Term)

{ match m

case Fun(_) ⇒ m = n

case App(m0, m1) ⇒ ∃ m’, n’ •
Eval’(m0, Fun(m’)) ∧ Eval’(m1, n’) ∧ Eval’(Subst(m’, 0, n’), n) }

Fig. 9. Big-step semantics definition in Dafny using De Bruijn indices. Explicit proof trees let
the user provide witnesses to the SMT solver and work around the co-friendliness restriction.
The alternative Eval’ definition above does not pass the co-friendliness test, as it quantifies over
m’ and n’ in every step. Full example and proof of (λx . x x)(λx . x x)

co
=⇒ m for all m can be

found at uKXM »

other functions; so, any prefix predicate referenced in Ci is necessarily from a lower
cluster.

A cluster can be syntactically reduced to a single co-predicate, e.g.:

P(i , x0, . . . , xn) = 0 ≤ i ≤ n ∧ ((i = 0 ∧ C0σ) ∨ . . . ∨ (i = n ∧ Cnσ))
where σ = [Pi := (λ xi • P(i , x0, . . . , xn))]

n
i=0

(1)

In what follows, we assume P(x) = Cx to be the definition of P , where x stands for
the tuple of arguments and Cx for the body above. Let:

F (A) = {x | Cx [P := A]} (2)

where Cx [P := A] is Cx with occurrences of P replaced with (the characteristic
function of set) A . In other words, F is the functor taking an interpretation A of P and
returning a new interpretation. In Sec. 1.3, we defined the semantics of a co-predicate
to be the greatest fix-point of F (i.e., gfp(F)).

Let P# be the prefix predicate corresponding to P . We will write the prefix-length
argument k as a superscript, as in P#k . The prefix predicates are defined inductively
as follows:

P#0(x) ≡ > P#k+1(x) ≡ Cx [P := P#k] (3)

Theorem 0.
x ∈ gfp(F) ⇐⇒ ∀ k • P#k (x)

The simple proof, which is found in our companion technical report [20], uses the
Kleene fix-point theorem and the fact that F is Scott continuous (i.e., intuitively, mono-
tonic due to positivity restrictions, and possible to falsify with a finite number of argu-
ment tuples due to co-friendliness).

http://rise4fun.com/Dafny/uKXM

5 Related Work

Most previous attempts at verifying properties of programs using co-induction have
been limited to program verification environments embedded in interactive proof assis-
tants. Early work includes an Isabelle/HOL package for reasoning about fix-points and
applying them to inductive and co-inductive definitions [30]. The package was build-
ing from first principles and apparently lacked much automation. Later, a variant of
the circular co-induction proof rules [32] was used in the CoCasl [11] object-oriented
specification system in Isabelle/HOL. These rules essentially give a way to hide away
the co-induction hypothesis when it is first introduced, “freezing” it until a time when
it is sound to use it. In CoCasl, as in the CIRC [23] prover embedded in the Maude
term rewriting system, the automation is quite good. However, the focus is on proving
equalities of co-datatype values, and expressing general co-predicates is not as direct as
it is in Dafny.

Co-induction has long history in the Coq interactive proof assistant [10,7]. A virtue
of the standard co-induction tactic in Coq is that the entire proof goal becomes available
as the co-induction hypothesis. One must then discipline oneself to avoid using it except
in productive instances, something that is not checked until the final Qed command. In
Dafny, any assert in the middle of the proof will point out non-productive uses.

The language and proof assistant Agda [27,6], which uses dependent types based
on intuitionistic type theory, has some support for co-induction. Co-recursive datatypes
and calls are indicated in the program text using the operators ∞ and] (see, e.g., [0]).
In Agda, proof terms are authored manually; there is no tactic language and no SMT
support to help with automation.

Using the sized types in MiniAgda [?], one also proves properties of infinite struc-
tures by proving them for any finite unrolling. Properties are specified using definitions
of co-datatypes, which are more restrictive than co-predicates in Dafny. In particular,
there is no existential quantification and thus co-friendliness comes for free.

Moore has verified the correctness of a compiler for the small language Piton [25].
The correctness theorem considers a run of k steps of a Piton program and shows that
m steps of the compiled version of the program behave like the original, where m is
computed as a function of k and k is an arbitrary natural number. One might also be in-
terested in proving the compiler correctness for infinite runs of the Piton program, which
could perhaps be facilitated by defining the Piton semantics co-inductively (cf. [21]). If
the semantics-defining co-predicates satisfied our co-friendly restriction, then our D
axiom would reduce reasoning about infinite runs to reasoning about all finite prefixes
of those runs.

Our technique of handling co-induction can be applied in any prover that readily
handles induction. This includes verifiers like VCC [8] and VeriFast [12], but also in-
teractive proof assistants. As shown in Fig. 7, induction and co-induction can benefit
from the same automation techniques, so we consider this line of inquiry promising.

6 Conclusions

We have presented a technique for reasoning about co-inductive properties, which re-
quires only minor extensions of a verifier that already supports induction. In Dafny,

the induction itself is built on top of off-the-shelf state-of-the-art first-order SMT tech-
nology [9], which provides high automation. In our initial experience, the co-inductive
definitions and proofs seem accessible to users without a large degree of clutter. The
striking similarity of the inductive and co-inductive proofs certainly helps here. Even
so, we suspect that further automation is possible once techniques for mechanized co-
induction reach a maturity more akin to what is provided for induction by tools today
(e.g., [16,28,26,3,15,33,18]). With possible applications in both verifiers and other proof
assistants, our work of making co-induction available in an SMT-based verifier takes a
step in the direction of reducing the human effort required to reason about co-induction.

Acknowledgments During the course of this work, we have benefited from discussions with
many colleagues who understand co-induction far better than we. We are grateful to all and
mention here a subset: Jasmin Blanchette, Manfred Broy, Adam Chlipala, Ernie Cohen, Patrick
Cousot, Jean-Christophe Filliâtre, Bart Jacobs (Nijmegen), Daan Leijen, Ross Tate. We also thank
many anonymous reviewers.

References

0. T. Altenkirch and N. A. Danielsson. Termination checking in the presence of nested inductive
and coinductive types. Short note supporting a talk given at PAR 2010, 2010. Available from
http://www.cse.chalmers.se/~nad/publications/.

1. B. Beckert, R. Hähnle, and P. H. Schmitt. Verification of Object-Oriented Software: The KeY
Approach, volume 4334 of LNAI. Springer, 2007.

2. Y. Bertot. Filters on coinductive streams, an application to Eratosthenes’ sieve. In TLCA
2005, volume 3461 of LNCS, pages 102–115. Springer, 2005.

3. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development —
Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.

4. R. Bird and P. Wadler. Introduction to Functional Programming. International Series in
Computing Science. Prentice Hall, 1992.

5. S. Böhme and T. Nipkow. Sledgehammer: Judgement Day. In IJCAR 2010, volume 6173 of
LNCS, pages 107–121. Springer, 2010.

6. A. Bove, P. Dybjer, and U. Norell. A brief overview of Agda — a functional language with
dependent types. In TPHOLs 2009, volume 5674 of LNCS, pages 73–78. Springer, 2009.

7. A. Chlipala. Certified Programming with Dependent Types. MIT Press, To appear.
http://adam.chlipala.net/cpdt/.

8. E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte,
and S. Tobies. VCC: A practical system for verifying concurrent C. In TPHOLs 2009,
volume 5674 of LNCS, pages 23–42. Springer, 2009.

9. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS 2008, volume 4963 of
LNCS, pages 337–340. Springer, 2008.

10. E. Giménez. An application of co-inductive types in Coq: Verification of the alternating bit
protocol. In TYPES’95, volume 1158 of LNCS, pages 135–152. Springer, 1996.

11. D. Hausmann, T. Mossakowski, and L. Schröder. Iterative circular coinduction for CoCasl
in Isabelle/HOL. In FASE, volume 3442 of LNCS, pages 341–356. Springer, 2005.

12. B. Jacobs and F. Piessens. The VeriFast program verifier. Technical Report CW-520, De-
partment of Computer Science, Katholieke Universiteit Leuven, 2008.

13. B. Jacobs and J. Rutten. An introduction to (co)algebra and (co)induction. In Advanced Top-
ics in Bisimulation and Coinduction, number 52 in Cambridge Tracts in Theoretical Com-
puter Science, pages 38–99. Cambridge University Press, 2011.

http://www.cse.chalmers.se/~nad/publications/

14. B. Jacobs, J. Smans, and F. Piessens. VeriFast: Imperative programs as proofs. In VS-Tools
workshop at VSTTE 2010, 2010.

15. M. Johansson, L. Dixon, and A. Bundy. Case-analysis for Rippling and inductive proof. In
ITP 2010, volume 6172 of LNCS, pages 291–306. Springer, 2010.

16. M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishers, 2000.

17. K. R. M. Leino. Dafny: An automatic program verifier for functional correctness. In LPAR-
16, volume 6355 of LNCS, pages 348–370. Springer, 2010.

18. K. R. M. Leino. Automating induction with an SMT solver. In VMCAI 2012, volume 7148
of LNCS, pages 315–331. Springer, 2012.

19. K. R. M. Leino. Automating theorem proving with SMT. In ITP 2013, volume 7998 of
LNCS, pages 2–16. Springer, 2013.

20. K. R. M. Leino and M. Moskal. Co-induction simply: Automatic co-inductive proofs in a
program verifier. Technical Report MSR-TR-2013-49, Microsoft Research, 2013.

21. X. Leroy. Coinductive big-step operational semantics. In ESOP 2006, volume 3924 of LNCS,
pages 54–68. Springer, 2006.

22. X. Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–115, 2009.
23. D. Lucanu and G. Rosu. CIRC: A circular coinductive prover. In CALCO, volume 4624 of

LNCS, pages 372–378. Springer, 2007.
24. R. Milner. A Calculus of Communicating Systems. Springer, 1982.
25. J. S. Moore. A mechanically verified language implementation. Journal of Automated Rea-

soning, 5(4):461–492, 1989.
26. T. Nipkow, L. Paulson, and M. Menzel. Isabelle/HOL — A Proof Assistant for Higher-Order

Logic, volume 2283 of LNCS. Springer, 2002.
27. U. Norell. Towards a practical programming language based on dependent type theory. PhD

thesis, Chalmers University of Technology, 2007.
28. S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srivas. PVS: Combining speci-

fication, proof checking, and model checking. In CAV ’96, volume 1102 of LNCS, pages
411–414. Springer, 1996.

29. D. Park. Concurrency and automata on infinite sequences. In Theoretical Computer Science,
5th GI-Conference, volume 104 of LNCS, pages 167–183. Springer, 1981.

30. L. C. Paulson. Mechanizing coinduction and corecursion in higher-order logic. Journal of
Logic and Computation, 7, 1997.

31. S. Peyton Jones. Haskell 98 language and libraries: the Revised Report. Cambridge Univer-
sity Press, 2003.

32. G. Rosu and D. Lucanu. Circular coinduction: A proof theoretical foundation. In CALCO,
volume 5728 of LNCS, pages 127–144. Springer, 2009.

33. W. Sonnex, S. Drossopoulou, and S. Eisenbach. Zeno: An automated prover for properties of
recursive data structures. In TACAS, volume 7214 of LNCS, pages 407–421. Springer, 2012.

	Co-induction Simply
	Introduction
	Contributions

	Co-inductive Definitions
	Background
	Defining Co-inductive Datatypes
	Creating Values of Co-datatypes
	Stating Properties of Co-datatypes

	Co-inductive Proofs
	Properties About Prefix Predicates
	Co-lemmas
	Prefix Lemmas
	Automation

	More Examples
	Zip
	Wide Trees
	FivesUp
	Filter
	Iterates
	Recursive Types
	Big-step semantics

	Soundness
	Related Work
	Conclusions
	Acknowledgments

