
Addressing JavaScript JIT engines performance
quirks: A crowdsourced adaptive compiler

Rafael Auler1, Edson Borin1, Peli de Halleux2, Micha l Moskal2, and Nikolai
Tillmann2

1 University of Campinas, Brazil
{auler,edson}@ic.unicamp.br

2 Microsoft Research, Redmond, WA, USA
{jhalleux,micmo,nikolait}@microsoft.com

Abstract. JavaScript has long outpaced its original target applications,
being used not only for coding complex web clients, but also web servers,
game development and even desktop applications. The most appealing
advantage of moving applications to JavaScript is its capability to run
the same code in a large number of different devices. It is not surpris-
ing that many compilers target JavaScript as an intermediate language.
However, writing optimizations and analyses passes for a compiler that
emits JavaScript is challenging: a long time spent in optimizing the code
in a certain way can be excellent for some browsers, but a futile effort for
others. For example, we show that applying JavaScript code optimiza-
tions in a tablet with Windows 8 and Internet Explorer 11 increased
performance by, on average, 5 times, while running in a desktop with
Windows 7 and Firefox decreased performance by 20%. Such a scenario
demands a radical new solution for the traditional compiler optimiza-
tion flow. This paper proposes collecting web clients performance data
to build a crowdsourced compiler flag suggestion system in the cloud that
helps the compiler perform the appropriate optimizations for each client
platform. Since this information comes from crowdsourcing rather than
manual investigations, fruitless or harmful optimizations are automati-
cally discarded. Our approach is based on live measurements done while
clients use the application on real platforms, proposing a new paradigm
on how optimizations are tested.

Keywords: Adaptive compilation, JavaScript engines, just-in-time com-
pilation

1 Introduction

JavaScript started as a simple non-professional scripting language in 1995 to
support small-scale client-side logic in the earliest versions of the Netscape Nav-
igator web browser. By now the language has become so pervasive that it invaded
even non-web domains previously reserved for classic programming languages.
With the availability of high performing virtual machines like Node.js [28] and
efficient Just-in-Time (JIT) compilation technology, not only are complex web



2 Rafael Auler et al.

applications moving its logic to client-side JavaScript, but server applications
are also being coded in JavaScript as much of the server-side programming logic
fits nicely with JavaScript closures. Overall, JavaScript’s popularity made the
language common for coding web clients, web servers, game development and
even desktop applications [1].

The most appealing advantage of moving applications to JavaScript is its ca-
pability to run the same code in a large number of different devices. This was a
major factor for the design of TouchDevelop [29], a modern, device independent
browser-based programming language and development environment. TouchDe-
velop offers a platform for users to create scripts in its own custom language,
designed for simplicity of programming on touch devices. As far as we are aware,
TouchDevelop is currently the most advanced environment for programming on
the phone. While the original purpose was to create simple scripts selecting cod-
ing structures with your finger, it turned out to be so easy to program that it
began being adopted as a teaching environment in schools, by hobbyist program-
mers, and even by professional developers using their phone to program while
on the go.

TouchDevelop scripts inherit the characteristics of their platform and run
on the browser as JavaScript code, so there is a compiler that translates the
TouchDevelop language to JavaScript. JavaScript is a hot target for compilers,
as seen by the increasing number of projects that compile code to it, such as
the Google Web Toolkit [2] by Google, TypeScript [7] by Microsoft, Dart [5] by
Google or the Emscripten [30] used in the LLVM [10] community.

However, the ability to run on many different environments also brings new
challenges when it comes to ensure good performance of the scripts. Since clients
have different browsers to choose from and each browser implements its own
JavaScript engine (e.g. SpiderMonkey [3], V8 [9], JavaScriptCore (aka. Nitro) [8]
or Chakra [6]), optimizing the JavaScript code becomes a guessing game because
each engine has its own optimizations and limitations.

Moreover, writing optimizations and analyses passes for a compiler that emits
JavaScript is further complicated because of the time spent in optimizing code,
which affects user experience when the compilation is not offline, as in TouchDe-
velop. The compiler can spend a significant amount of time to apply an opti-
mization that is worthless for a particular JIT engine or even make the script
slower. There is a number of possible causes: the underlying JIT engine may
already apply this kind of optimization; changing the code in a particular way
may preclude further JIT optimizations by the browser; or perhaps this partic-
ular issue was never the true performance bottleneck of this system. Overall, it
is expensive to handle all particularities of each platform.

To overcome these problems, we developed a crowdsourced approach to drive
our JavaScript compiler optimizations. We use a benchmark set of TouchDevelop
scripts to exercise common performance bottlenecks and compile these scripts
with different optimizations in different clients, storing the results of each client
in the cloud. This enables us to characterize how each system responds to our
optimizations and this information gets uploaded to the cloud. When another



Addressing JavaScript JIT engines performance quirks 3

user that uses the same platform compiles the TouchDevelop script to JavaScript,
the system queries the cloud to know the best set of flags, or optimizations to
apply, that best suits her system.

In this paper we describe this system in detail and report on our experience
with our crowdsourced flag inference to circumvent JIT engines limitations. We
also present a set of optimizations that addresses common language implemen-
tation issues when compiling to JavaScript that is able to speed applications up
by 30x.

The main contributions of this work are as follows:
– We identify how JavaScript performance can vary from browser to browser

and present three optimizations that handle the limitations of each JavaScript
engine regarding common language implementation issues;

– We describe an approach to performance data crowdsourcing of web client
software;

– We present a compiler flag suggestion system for a compiler that targets
the JavaScript language;

– We implement and test these concepts in a real web-based programming
environment used by tens of thousands of users, TouchDevelop, and present data
from more than a thousand users that collaborated with the project.

This paper is organized as follows. Section 2 presents our benchmark selec-
tion, Section 3 discusses how performance data is reported to the cloud, Section 4
presents the overall structure of the TouchDevelop compiler, Section 5 presents
the experimental results, Section 6 discusses related work and Section 7 presents
the conclusions.

2 Selection of Benchmarks

The selection of benchmarks shapes the development of compiler optimizations
and the performance bottlenecks identification. At the same time that it is at the
crux of the performance study of any computer system [27], it is also impossible
to build a set of programs that exercises the execution paths of all possible
programs that can be written in a general purpose programming language.

To commit to a specific set of benchmarks is an important step, and there-
fore we chose the benchmarks from the Computer Languages Benchmarks Game
(CLBG) [4] because of the benefit of comparing the TouchDevelop language per-
formance with several other languages that had the same programs implemented
using them. Table 1 presents the 8 chosen benchmark programs from the Com-
puter Language Benchmarks Game.

Our benchmark selection includes all of the CLBG programs, except for those
that use thread support, since TouchDevelop does not support multi-threading
nor does the underlying language that TouchDevelop compiles to, JavaScript.

The CLBG website also publishes results and implementations of the same
programs in optimized JavaScript. This enables us to compare the performance
of the code generated by the TouchDevelop compiler against a manually written
version of the same program in JavaScript.



4 Rafael Auler et al.

Table 1. Description of the selected benchmark programs taken from the CLBG web-
site [4].

Program Description

n-body Perform an N-body simulation of the Jovian planets

fannkuch-redux Repeatedly access a tiny integer-sequence

fasta Generate and write random DNA sequences

spectral-norm Calculate an eigenvalue using the power method

reverse-complement Read DNA sequences and write their reverse-complement

mandelbrot Generate a Mandelbrot set and write a portable bitmap

k-nucleotide Repeatedly update hashtables and k-nucleotide strings

binary-trees Allocate and deallocate many binary trees

3 Live crowdsourced performance measurement

A primary issue in the live performance measurement of web client software,
which is the measurement of the users experience while they are using the plat-
form, is how to cope with the diversity of platforms where the measurements are
taking place. Specifically, how to compare and keep track of the performance of
the web client software if the computers that run it are constantly changing?

For example, a näıve comparison can mistakenly report code performance
improvements between two measurements simply because the latest measure-
ment took place in a client device that is more powerful than the device where
previous measurements were taken. To tackle this issue, we first start by aggre-
gating data by each different platform string taken from the User Agent string
in HTTP requests. We tallied over 30 different client platforms that were using
the TouchDevelop web client. This allows us to examine separately the behavior
on each different kind of platform.

Table 2 shows the number of synchronization requests to update the web
client with respect to the cloud data, a measurement of the activity by platform.
Along with the data required to identify the platform, we also send to the server
the wall time that this device took to run our benchmarks in JavaScript. For
example, the first line shows the platform with the highest activity measured,
a version of the Windows Phone 8 with the Internet Explorer 10 browser with
11,756 requests, whose average time to complete the execution of the JavaScript
benchmark is 688.86 ms and the standard deviation is 266.84 ms. This data was
extracted from a batch of 50,000 requests.

Categorizing the performance data with respect to the platform string is use-
ful, but not enough. Table 2 shows that in a given platform, there is a very high
standard deviation between all the measurements of the run time to complete
the same task. While identifying devices by the User Agent string gives some
characteristics of the client system, we are not able to fully identify underlying
hardware configuration, which plays a crucial role in the final system speed and
cause significant differences in the reported run time to complete the same task.

To allow us to study the performance improvement of web clients regardless
of the client speed, we adopted the run time of the JavaScript version of the



Addressing JavaScript JIT engines performance quirks 5

Table 2. Frequency of use of the 5 most popular TouchDevelop web clients by platform
string, in number of synchronization requests (total of 50,000 requests by 32 different
platforms during August 2013).

Platform Requests Average Time to Com-
plete Benchmark (ms)

Windows Phone 8.0.10211.0 with IE10 11,756 688.86 ± 266.84 ms

Windows 7 Desktop with Chrome 6,046 149.52 ± 172.47 ms

Windows 8 Desktop with Chrome 5,731 144.93 ± 140.82 ms

Windows Phone 8.0.10328.0 with IE10 3,998 623.18 ± 219.17 ms

Windows 8 Desktop with IE10 3,336 572.26 ± 1638.84 ms

programs featured in our subset of the Computer Language Benchmarks Game
run on a particular small input, as a reference time for this platform, the unit
time. It is an indication of the processing power of the platform, measured by
the time it took to complete (the lower, the better).

Time measurements reported to the cloud comes with the unit time as well,
along with the raw time required to complete a task. The raw time is divided
by the reference time, and finally this ratio is reported as an approximated task
performance score.

Figure 1 shows a diagram explaining how different devices report performance
results to the cloud. The raw run time required to run a certain task, for example,
a script execution, is divided by the unit time, a reference of its computational
power.

Clients collecting 
performance

Cloud

Unit time: 210ms
Script time: 55ms
Final score: 0.27

Unit time: 1200ms
Script time: 260ms
Final score: 0.22

Unit time: 620ms
Script time: 150ms
Final score: 0.24

Fig. 1. A diagram showing how performance of different client devices is reported back
to the cloud.



6 Rafael Auler et al.

For example, a desktop with Mozilla Firefox 23 typically executes the unit
benchmark in 210 ms, while a slower smartphone with Internet Explorer 10 in
1200 ms and an intermediary tablet device with Chrome in 600 ms. Suppose we
want to test the execution speed of a script S. The script execution time is very
different across these devices, but the run time of S divided by the unit time
will be closer even among different devices, since the slowdown caused by the
different device speed is factored out.

A special case is that of measuring our optimizations effects on the benchmark
programs, as reported in this paper. The benchmark measurements are normal-
ized against the JavaScript version of each corresponding individual benchmark
in JavaScript running the exact same input, rather than the time taken to run
the unit benchmark.

3.1 Distribution of Client Performance Scores

Figure 2 shows a histogram of the time a device needs to complete the execution
of our reference benchmark in JavaScript, giving an overview of the range of
TouchDevelop clients performance. The client unit time piggybacks on every
synchronization request to the cloud, allowing us to examine how fast our client
platforms are. The histogram shows three distinct classes:

0
20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

1,
40
0

1,
60
0

0

5,000

10,000
Tablets, Faster Phones

Desktops

Slower Phones

Time to Perform Unit Benchmark in JavaScript (ms)

N
u
m

b
er

o
f

D
ev

ic
e

R
eq

u
es

ts

Fig. 2. Unit time histogram (50,000 client requests)

1. Desktops: With an average of 70ms to complete the JavaScript benchmark,
these represent the fastest edge in the devices spectrum.

2. Tablets and Faster Phones: They have an average of 570ms to complete
the benchmark and represent the latest generation smartphones and tablets.

3. Low-end Phones: They have a wider variation and greater diversity in
models, but typically completes the benchmark in approximately 1 second,
10 times slower than desktops. Their worse performance is due to a combi-
nation of simpler hardware and JIT engines.



Addressing JavaScript JIT engines performance quirks 7

4 TouchDevelop compiler overview

The TouchDevelop compiler is the component that translates scripts written
in the TouchDevelop language to pure JavaScript running on the following
browsers: Internet Explorer 10+, Chrome 22+ for PCs, Macs and Linux, Firefox
16+ for PCs, Macs and Linux, Safari 6+ for Macs, Mobile Safari on iOS 6+ for
iPad, iPhone and iPod Touch and Chrome 18+ for Android. Figure 3 shows a
diagram with an overview of how scripts are executed.

The complete software stack involves two layers of translators, the first trans-
lating TouchDevelop scripts to JavaScript, and the second translating JavaScript
to machine code. We use a black-box approach to the second layer and we do
not focus on investigating its internals, but we wish to infer its capabilities by
analyzing performance results. This section discusses only the first layer.

The script on the left-hand side of Figure 3 is the input script written by
the user. Since the script code can call asynchronous functions (e.g. consume
a web service), the Execution Manager, the component responsible for ensuring
correct script execution, must remember the context of the call in order to resume
script execution when the request response arrives. However, there is no support
for direct jump to a specific point of the code in JavaScript. To overcome this
issue, the Execution Manager splits the script code into several separate native
JavaScript functions and executes them in a continuation-passing style [11].

Execution Manager
 Yields Control Back 

to Browser
 Executes the Script

Fig. 3. Overview of TouchDevelop scripts execution

In the script, every point that is a target of a jump starts a new JavaScript
function. Besides asynchronous calls, this is also true for loop structures because
the Execution Manager must also ensure that the browser user interface (UI)
update stack runs periodically, which does not happen if a loop structure runs
for too much time without returning to the Execution Manager. In this case, the



8 Rafael Auler et al.

UI may look frozen or, in an even worse scenario, the browser may terminate
the script (after possibly asking the user), which is undesirable, particularly
for games. The Execution Manager avoids this situation by deciding the next
program segment to run; if a time budget is exceeded, it yields control back
to the browser by means of a call to a setTimeout function to resume script
execution later.

Owing to the lack of a jump construct in JavaScript, the continuation-passing
style execution is a common language implementation technique and we targeted
two optimizations at improving this kind of execution. The next subsections
present all three code transformations we employed to optimize the execution of
the scripts compiled to JavaScript code.

4.1 Safety Checks Elimination

Prior to every use of a value in the TouchDevelop language or in any other
language where sanity checks must be performed, the value must be checked for
undefined references (see Figure 4). In the case of TouchDevelop, where first-
time programmers are the language target audience, the detection of uses of
the undefined value makes it easier to understand and spot bugs. The removal
of these safety checks can propagate the error inside a runtime function and
cause crashes outside the scope of the TouchDevelop script, that is, errors in the
JavaScript run time library that intimidates novice programmers unaware of the
underlying infrastructure.

function ok1(a0) {

if (a0 == undefined)

TDev.Util.userError("using invalid value");

}

Fig. 4. Code excerpt for the safety check

Figure 4 shows a separate function to check for undefined references. We put
the code in a separate function to help us distinguish this code in our profiler;
inlining the calls to this function has no difference in performance.

Figure 5 shows the results of profiling, on an Internet Explorer 10 desktop
platform, of the execution of the Mandelbrot program from the CLBG imple-
mented as a TouchDevelop script. Mandelbrot spends most of its time in a loop
body calculating values of the pixels of a fractal image. Function arun6 is this
loop body and, therefore, corresponds to time spent executing the actual algo-
rithm.

All other functions are execution overhead. The ExecutionManager entry is
the time spent inside the Execution Manager while it is giving back control to
the browser or to the next script fragment scheduled. The ok1 and ok2 functions
are safety checks for 1 and 2 arguments operations respectively. Therefore, 72%



Addressing JavaScript JIT engines performance quirks 9

ExecutionManager

ok1

arun6

ok2

5%

22%

23%

50%

Percentage of Total Execution Time

F
u
n
ct

io
n

N
a
m

e

Fig. 5. Profiling of the Mandelbrot benchmark script in Internet Explorer 10 for a
desktop machine.

of the script execution time is spent checking whether values are undefined for
the Mandelbrot when running on Internet Explorer.

This motivated the construction of analyses passes to remove unnecessary,
redundant checks for which we can either prove that the tested value is never
undefined or that has already been checked in the past and was not changed
since then.

4.2 Stack Frame Bypass

Recall that if the script calls an asynchronous function, the Execution Man-
ager needs to remember the point where the script stopped in order to resume
the execution when the response comes, and how this can be addressed by the
continuation-passing style of execution. It also needs to remember all of the caller
action local variables. This context-saving performed by the Execution Manager
requires the maintenance of a data structure to hold the call stack with stored
local variables for the current action.

To allow this, each time the script needs to call an action, the TouchDevelop
analogue for a function, the Execution Manager first needs to build an object to
hold all locals of this action and then call the first function fragment to start its
execution. Furthermore, the explicit stack frame causes an additional overhead:
each local read and write translates to JavaScript object accesses instead of a
JavaScript local variable access.

However, if the action does not call other actions and does not have loop
structures, there is no point in building expensive, explicit stack frames because
there is no need to resume execution of the action: it executes once and exits
back to the caller. It is possible to build a call graph and remove the stack
frame from leaf functions with these properties. When this is done, the script
can bypass the Execution Manager and call the leaf function directly, as it would
call a JavaScript helper function, since the execution manager does not need to
instantiate a special stack anymore.

Figure 6 shows the call graph construction where we can see that Action F
is a simple leaf function that can be emitted as a native JavaScript function. An
important observation is that if an action only calls other actions that don’t need
context and it does not have loop structures or calls to asynchronous functions,



10 Rafael Auler et al.

it also does not need a context itself. To implement this, we employ a bottom-up
analysis of the call graph, which enables us to remove the stack frame at multiple
levels, not only leaf functions.

Action A
Simple

Action B
Simple

Action C
Calls Async

Action D
Simple

Action E
Has Loops

Action F
Simple

Can be optimized

Regular

Fig. 6. A call graph identifying optimization opportunities for actions whose stack
frame can be removed.

4.3 Block Chaining

The Execution Manager is an expensive mechanism in script execution because
after a script fragment finishes, it hands over control back to the Execution
Manager along with an indication of the next fragment to execute, which means
the regular program flow always involves visiting the Execution Manager several
times. This is especially true for loop constructs because they involve going back
to some previous point in the script and this is accomplished by isolating the
loop body into a separate JavaScript function that will be called every iteration.

At the end of each loop iteration, it must return back to the Execution
Manager that in turn calls the fragment again to execute the next iteration. It
is not possible to bypass the Execution Manager by emitting a native for or
while construct in JavaScript because if the loop body makes an asynchronous
call, it is no longer possible to resume execution to the next program point.
Furthermore, giving control to the script for too much time, for instance, over
many iterations of a loop, can delay the browser UI update thread and make the
app looks unresponsive.

For a loop-intensive benchmark like the Pfannkuchen program, which repeat-
edly calculates permutations using a complex loop structure, this mechanism
generates a considerable overhead. Figure 7 shows the profiling of this program
running on Chrome 29 for desktops, and we see that the Execution Manager
actually spends more time than the application itself.

Figure 8 presents a technique to avoid excessive returns to the Execution
Manager by chaining fragments execution: instead of returning the next fragment
to execute, a fragment can call the next fragment itself, bypassing the Execution



Addressing JavaScript JIT engines performance quirks 11

garbage-collector
index-check

oks
runtime-library

actual-program-code
ExecutionManager

0.66%
1.31%

3.96%
15.51%

37.71%
38.9%

Percentage of Total Execution Time

P
ro

g
ra

m
F

ra
g
m

en
t

Fig. 7. Profiling of the Pfannkuchen benchmark script in Chrome 29 for a desktop
machine.

Manager. To avoid that a really long loop takes control of the thread making
the app unresponsive, we add a trip count to mark how many iterations skipped
the Execution Manager and once a threshold is met, it finally returns to the
Execution Manager. Notice that this parameter affects the call nesting level and
should be tuned by platform, since some systems, most notoriously the Mobile
Safari browser, implement a very shallow call stack.

Execution Manager
 Yields Control Back 

to Browser
 Executes the Script

Overhead

Execution Manager
 Yields Control Back 

to Browser
 Executes the Script

Unoptimized

Optimized

Fig. 8. Chaining blocks of execution to bypass the Execution Manager

Even taking care of the trip count, this technique can reduce responsiveness
of the application unnecessarily. It is important to have the crowdsourced perfor-
mance measurements to know where it is profitable to apply this optimization.
The next section dives into the crowdsourced performance results and discuss
the effectiveness of all these optimizations.

5 Results

We show the crowdsourced compiler flag recommendation system in practice
with an experiment to test the performance of the three optimizations imple-
mented for JavaScript code emission. Users of TouchDevelop were prompted to



12 Rafael Auler et al.

help with benchmark measurements and, once accepted, a single benchmark with
random flags ran on their platform and the results were uploaded back to the
cloud. We collected more than 1,000 measurements, allowing us to draw clear
conclusions for 8 different platforms. The results appear in Figure 9.

Platform
Safety Checks 

Elimination

Stack Frame 

Bypass
Block Chaining

Suggested 

Flags

Tablet with Windows 8 and IE 10 5.8 5.8 5.6 sfb

Desktop with Windows 8 and Chrome 1.1 1.2 1.1 -

Desktop with Windows 8 and IE 10 2.6 2.6 2.6 sfb

Desktop with Windows 7 and Chrome 1.1 1.4 1.1 f

Tablet with Windows 8 and IE 11 4.5 5.0 6.0 sfb

Cellphone with IE 10 1.5 1.5 1.7 sfb

Desktop with Windows 7 and Firefox 0.9 0.8 1.6 b

Desktop with Windows 7 and IE 10 1.3 1.3 1.3 -

Fig. 9. Color-coded recommendation table that suggests which flags to apply on each
client browser platform.

The second line shows that the Windows 8 with Chrome platform has, on
average, 10% performance improvements after Safety Checks Elimination, 20%
after Stack Frame Bypass, 10% with Block Chaining and therefore no special
flags are recommended for this platform. In order to show that an optimiza-
tion is really important, the crowdsourced data must show that the average im-
provements for a given platform surpass 30%. We see this scenario for a Tablet
with Windows 8 and IE 11: programs run 4.5 times faster after removing safety
checks, 5 times faster after bypassing the stack frame whenever possible and 6
times faster with block chaining. However, we see a 20% performance decrease
for Windows 7 with Firefox, showing that changing the code can actually be
worse for some platforms and, therefore, the importance of crowdsourcing the
performance of optimizations, checking whether we have real improvements.

In order to understand why the crowdsourced data lead to these conclusions,
the next subsections describes in detail experiments on a single desktop platform,
showing what happens with each browser after each of our optimizations are
turned on. Finally, we show how the improvements on a Microsoft Surface RT
Tablet platform look like.

5.1 No optimizations

Figure 10 presents the performance figures for our benchmark implemented in
TouchDevelop compared against optimized hand-crafted JavaScript code, for
different JIT engines. For example, the program Binary Trees in TouchDevelop
runs 46.3 times slower than the same algorithm implemented in JavaScript on
Chrome 27. Slowdowns of this magnitude are expected because of the runtime
mechanism for TouchDevelop scripts, which is continuously interrupting script



Addressing JavaScript JIT engines performance quirks 13

execution to yield control back to the browser when it is necessary. However,
higher slowdowns are a consequence of a performance bottleneck.

B
in
ar
yT
re
es

M
an
de
lb
ro
t

Sp
ec
tr
al
N
or
m

N
B
od
y

P
fa
nn
ku
ch
en

Fa
st
a

R
ev
er
se
C
om

p

K
nu
cl
eo
ti
de

0

200

400

600
4
6
.3

x

3
6
.8

x

6
9
.9

x

2
5
.4

x 1
2
2
.3

x

4
3
.9

x

7
5
.5

x

2
6
.6

x

6
5
.8

x

3
3
9
.1

x

2
3
2
.8

x

1
5
8
.9

x 3
0
3
.2

x

1
2
0
.4

x

5
3
.3

x

4
0
.4

x

8
0
.2

x 1
8
0
x

1
9
7
.6

x

1
0
1
x

3
6
5
.4

x

5
3
.2

x

4
5
.3

x

3
2
.4

xS
lo

w
d
ow

n

Chrome

IE

Firefox

Fig. 10. The slowdown of running each benchmark as a TouchDevelop script, when
compared to optimized JavaScript code.

The JavaScript optimized performance is only used as a reference and as an
upper bound for performance. We focus on the difference of performance between
the different JIT engines. Perhaps the most notorious performance result is that
of Mandelbrot, a small program that fits almost completely in Figure 11. Its
purpose is to calculate a fractal image, and for each pixel of the image it uses
a formula to determine whether the pixel is black or white. Its performance
running on a desktop with Chrome 27 is 36.8 times slower than the JavaScript
version running in the same environment, while on Internet Explorer 10 the
slowdown is 339.1 times and on Firefox 21 it is 180 times.

The cause of such large performance differences amongst different JIT engines
is a consequence of the different compilation schemes employed by each one, and
we need to be aware of these idiosyncrasies and handle them when optimizing
for performance. The fact that Internet Explorer 10 runs this script with a
slowdown of 339.1 means that either the JavaScript baseline version is too fast
or the TouchDevelop version is too slow, when compared to other browsers. In
both cases, it is clear that out compiler fails to extract the performance that
this browser can deliver for this code fragment as good as we do it for Chrome.
Nevertheless, the JavaScript execution time differences of Mandelbrot for both
Chrome and Internet Explorer are negligible, showing that the problem is really
a bad interaction of our generated JavaScript code and Internet Explorer 10.

The programs Spectral Norm, for calculating eigen values, N Body, for per-
forming physics simulation and Pfannkuchen, for calculating the maximum num-
ber of permutations in a math riddle, all suffer similar performance differences
between JIT engines.



14 Rafael Auler et al.

Fig. 11. Main loop of the Mandelbrot algorithm implemented in TouchDevelop, acces-
sible via https://www.touchdevelop.com/iyyydbkw.

5.2 Safety Checks Elimination

Figure 12 presents the results of the safety checks elimination, an optimization
we wrote for the TouchDevelop compiler, and its effects on different JIT engines.

B
in
ar
yT
re
es

M
an
de
lb
ro
t

Sp
ec
tr
al
N
or
m

N
B
od
y

P
fa
nn
ku
ch
en

Fa
st
a

R
ev
er
se
C
om

p

K
nu
cl
eo
ti
de

G
eo
M
ea
n

0

5

10

15

0
.8

9
x

1
.2

4
x

0
.9

1
x

0
.9

1
x

0
.9

4
x

1
.0

3
x

1
.4

2
x

1
.0

4
x

1
.0

3
x

1
.0

2
x

1
0
.7

3
x

1
.9

9
x

2
.6

1
x

2
.8

x

1
.8

4
x

1
.5

4
x

0
.9

8
x

2
.1

4
x

0
.8

9
x

1
.3

5
x

1
.1

3
x

1
.4

x

1
.2

2
x

1
.0

3
x

0
.9

8
x

1
.0

9
x

1
.1

2
xS
p

ee
d
u
p

Chrome

IE

Firefox

Fig. 12. Elimination of safety checks: Speedups over baseline with no optimizations.

The graph now shows the speedup of the optimized script code versus the
unoptimized version. We see that one of the pathological cases, Mandelbrot, got
its performance substantially improved (10.73 times faster) in Internet Explorer
10, bringing its slowdown, when compared to the native JavaScript version, to
31.6 times for Internet Explorer. Chrome 27 executes the same program with
29.7 times of slowdown, while without optimizations it executed with 36.8 times
of slowdown.



Addressing JavaScript JIT engines performance quirks 15

The elimination of safety checks has almost no effect on Chrome, but it is
really important for Internet Explorer, showing that the knowledge of the under-
lying platform that is running our script is crucial to drive which optimizations
our compiler should apply.

5.3 Stack Frame Bypass

Figure 13 presents the effect of bypassing the creation of a separate stack frame
for actions in which it is not necessary to have one. The graph shows the cumu-
lative effect of applying both the elimination of safety checks and stack frame
bypass. The greatest speedup remains that of Mandelbrot thanks to the elimina-
tion of safety checks. The stack frame bypass affects only Spectral Norm, which
is a program whose inner loop depends on calling a helper action and therefore
exercises this kind of bottleneck. However, the platforms see uneven improve-
ments. Firefox 21 benefits the most out of this optimization, with an speedup of
9.11 times, while Internet Explorer 10 had 2.83 times, the lowest improvement,
and Chrome 27 had 3.92 times.

B
in
ar
yT
re
es

M
an
de
lb
ro
t

Sp
ec
tr
al
N
or
m

N
B
od
y

P
fa
nn
ku
ch
en

Fa
st
a

R
ev
er
se
C
om

p

K
nu
cl
eo
ti
de

G
eo
M
ea
n

0

5

10

15

0
.8

9
x

1
.2

3
x 3
.9

2
x

0
.8

9
x

1
.2

7
x

1
.0

8
x

0
.7

7
x

0
.8

8
x

1
.1

6
x

1
.0

1
x

1
0
.4

x

2
.8

3
x

2
.6

4
x

2
.6

9
x

2
.0

5
x

1
.6

6
x

1
.1

8
x

2
.3

2
x

0
.9

6
x

1
.3

6
x

9
.1

1
x

1
.2

5
x

1
.3

2
x

1
.2

4
x

1
x

1
.0

3
x

1
.5

xS
p

ee
d
u
p

Chrome

IE

Firefox

Fig. 13. Adding stack frame bypass: Speedups of safety checks elimination added with
stack frame bypass over baseline with no optimizations.

For Firefox 21, Spectral Norm started with a slowdown of 197.6 times and,
after this optimization, finished with a slowdown of 21.7 times, one of the lowest
slowdowns for TouchDevelop scripts execution.

5.4 Block Chaining

Figure 14 shows the final improvements of all optimizations, including block
chaining, when compared with the baseline without optimizations for a desktop
computer. The block chaining boosts Mandelbrot speedup in Internet Explorer
10 to be 21.19 times faster, making its original slowdown, when compared to pure
JavaScript, to be of 16 times, as opposed to 339.1 times without optimizations.

The speedup of Mandelbrot for Firefox 21 boosts from 1.36 times to 8.78
times faster, showing that, for Firefox, the block chaining mechanism is much



16 Rafael Auler et al.

B
in
ar
yT
re
es

M
an
de
lb
ro
t

Sp
ec
tr
al
N
or
m

N
B
od
y

P
fa
nn
ku
ch
en

Fa
st
a

R
ev
er
se
C
om

p

K
nu
cl
eo
ti
de

G
eo
M
ea
n

0

10

20

30

0
.9

x

2
.4

1
x

5
.3

3
x

0
.8

8
x

1
.7

1
x

1
.0

9
x

0
.7

8
x

0
.9

5
x

1
.3

9
x

1
x

2
1
.1

9
x

3
.1

6
x

2
.4

1
x

3
.8

5
x

2
.2

1
x

1
.5

6
x

1
.1

1
x

2
.6

4
x

1
.1

7
x

8
.7

8
x 1
4
.6

4
x

1
.3

8
x

3
.1

7
x

1
.8

4
x

1
.0

1
x

1
.1

8
x

2
.4

8
xS
p

ee
d
u
p

Chrome

IE

Firefox

Fig. 14. Adding block chaining: Speedups of all optimizations over baseline with no
optimizations.

more important than the elimination of safety checks. The block chaining in
Firefox is also responsible for making Spectral Norm 14.64 times faster, doubling
the gain obtained by stack frame bypass.

5.5 Surface RT with IE 11

So far, we have presented the effects of three code optimizations when generat-
ing JavaScript code for desktop browsers. However, the main audience for the
TouchDevelop project are mobile users, since it is a touch-friendly integrated de-
velopment environment. The combination of the software JIT methods with the
underlying simpler hardware platform creates yet another effects on the results.
The final effect of applying all three optimizations described in this paper when
running on a Microsoft Surface RT tablet with Internet Explorer 11 appears in
Figure 15.

B
in
ar
yT
re
es

M
an
de
lb
ro
t

Sp
ec
tr
al
N
or
m

N
B
od
y

P
fa
nn
ku
ch
en

Fa
st
a

R
ev
er
se
C
om

p

K
nu
cl
eo
ti
de

G
eo
M
ea
n

0

10

20

30

40

1.12x

34.39x

2.97x 2.49x 3.5x 1.69x 1.99x 1.05x 2.77x

S
p

ee
d
u
p

IE 11

Fig. 15. All optimizations speedups over baseline performance for Surface RT with
Internet Explorer 11.



Addressing JavaScript JIT engines performance quirks 17

In general, we observe that these optimizations are more important for the
Surface RT platform: the geometric mean of the measured speedups among all
programs is 2.77x, while for a desktop machine it is 2.64x. The largest improve-
ment is still Mandelbrot, but it is now 34.49 times faster, while on a desktop the
maximum speedup seen in Mandelbrot is 21.19x. The simpler low-power ARM-
based hardware platform is more sensitive to code improvements in comparison
with a power-hungry Intel out-of-order core, which can extract instruction-level
parallelism and can compensate for a lower quality code emission by the JIT
engine.

6 Related work

In this work we study how we can infer optimization flags based on crowdsourced
performance data for a compiler that produces JavaScript code. Since JavaScript
performance is largely dependent on the JIT compilation techniques employed
by the JavaScript interpreter, it is important to know which browser will run
this code. However, we assume no knowledge about the underlying JIT compila-
tion mechanism – instead, we expect to draw all necessary conclusions from our
collected data. On the other hand, there are several other studies that focus on
tuning the underlying JavaScript JIT compilation mechanism to improve perfor-
mance [12,21,22,23,24] or on selecting the best JavaScript framework to program
with [17]. For instance, Lee and Moon [22] study, for mobile web browsers, how
the JIT engine can be turned on or off in order to avoid waiting for the com-
pilation of a code that may be not frequently executed enough to pay off the
compilation time. Furthermore, mobile web browsers are such an important cell-
phone use case that they deserve a specific study on how to render pages with
the minimum use of battery: Zhu and Vijay [31] analyze how to leverage hetero-
geneous multiprocessor systems to render mobile web pages fast enough to the
user while maximizing power efficiency. Notice that although our data collection
mechanism cannot receive power information from our users, for homogeneous
systems, our recommendation system also improves power efficiency when it
reduces total script execution time.

Another important related field of study is in determining the best set of
optimizations to apply on a given compilation unit for traditional, static com-
pilers that does not rely on cloud support [13,14,16,19,20,25,26]. These works
differ from ours because they are targeted at traditional compilers rather than a
web-based compiler, and they focus on producing efficient assembly code rather
than JavaScript that runs on top of a JavaScript interpreter. Since, in this scope,
this problem involves deciding between tens of optimizations and the ordering
between then, it is a difficult problem even for a single well-known platform.
While compiler users traditionally have been using a fixed set of optimizations
to all programs, Cavazos et al. [13] were able to reduce the Jikes virtual machine
execution time on the SPECjvm98 benchmark by 29% on average by employ-
ing machine learning techniques to train the Jikes system to recognize methods
and decide which subset of optimizations to apply and its order. Pan et al. [25],



18 Rafael Auler et al.

Haneda et al. [19] and Pekhimenko et al. [26] also investigate methods to auto-
matically find a good subset of optimizations to apply to a given program.

Perkhimenko et al. apply a similar technique of Cavazos to a commercial
static compiler, reporting a compilation run time speed up by a factor of at least
2. To do this, a feature vector – characteristics that describe a method – is com-
puted from a program at compile time (statically) for the commercial compiler
Toronto Portable Optimizer (TPO). They extract instruction types and loop-
based parameters to describe methods. Our approach, on the other hand, does
not suggest flags per program, but it does per platform because we are primar-
ily concerned with dealing with a large number of client platforms, which must
be addressed before each program is fine-grainedly tuned. In our technique, we
determine the overall optimization efficiency based on the performance reports
of a benchmark set. If the benchmarks show improvements in total run time for
a given platform, the selected flags are suggested to be used for all programs of
this platform. Notice that the benchmark was selected to exercise the language
performance bottlenecks.

Perhaps the work with a greater similarity to ours is the GCC MILEPOST
project [16], an adaptive compiler framework that was created for research pur-
poses. To our knowledge, the MILEPOST project is the first attempt to use tun-
ing technology using a crowdsourced database to create real-world self-tuning
machine learning enabled static compilers. However, their work is targeted at
lower level compilation rather than JavaScript code emission, and their chal-
lenges are quite different since they do not have to run code on top of an existing
JIT infrastructure. Our work, on the other hand, is targeted at learning how to
generate efficient code for different browsers and JIT engines using crowdsourced
data for a modern, device independent browser-based programming language and
development environment. MILEPOST relies on machine learning techniques to
train the traditional open-source compiler GCC [15] in how to best optimize
programs. Fursin et al. [16] were able to learn a model that improved the per-
formance of the MiBench [18] benchmark by 11%.

7 Conclusion

We present a system that collects web clients performance data to build a crowd-
sourced compiler flag suggestion system in the cloud, helping the compiler per-
form the appropriate optimizations for a given platform. We also show a set
of optimizations that address common language implementation issues when
targeting JavaScript. Extracting performance and generating quality code for
JavaScript is quite challenging, since each JavaScript engine behaves in a differ-
ent way.

We implement and test these concepts in a real web-based programming envi-
ronment used by tens of thousands of users, TouchDevelop, allowing us to better
explore the crowdsourcing and cloud dimensions of this project. We enhance the
TouchDevelop compiler, which translates TouchDevelop scripts to JavaScript,
with three new optimizations.



Addressing JavaScript JIT engines performance quirks 19

We then present data from more than a thousand users that collaborated
with the project, showing a scenario where optimizations, on average, extract
5x speedups in a tablet with Windows 8 and Internet Explorer 11 but reduces
performance by 20% in a desktop with Windows 7 and Firefox. This is a con-
sequence of running code on top of complex Just-in-Time compilation engines,
which already apply its own optimizations and can make undisclosed code trans-
formations. The crowdsourcing approach allows us to detect such scenarios and
disable unfruitful optimizations in a per-platform basis by simply asking the
cloud the best set of flags for a given client.

In this work we assume no knowledge about the underlying JavaScript engine.
We rely on the crowdsourced performance data in order to overcome the difficul-
ties of increasing the performance of JavaScript and come up with an adaptive
compiler that applies a custom set of optimizations for each web client. This
automatic compiler flag suggestion system is able to cope with a wide variety of
more than 30 different client platforms without any manual effort.

As future work, we intend to leverage an existing system of crowdsourced
profiling of the scripts to also record the effects of a particular optimization on
the average performance of real-world programs in the field.

References

1. Develop High Performance Windows 8 Application with HTML 5 and
JavaScript. http://blogs.msdn.com/b/dorischen/archive/2013/04/26/develop-
high-performance-windows-8-application-with-html5-and-javascript-best-
practices-amp-tips.aspx.

2. Google Web Toolkit Page. http://www.gwtproject.org/.

3. Mozilla SpiderMonkey JavaScript Engine. https://developer.mozilla.org/en-
US/docs/Mozilla/Projects/SpiderMonkey.

4. The Computer Language Benchmarks Game.
http://benchmarksgame.alioth.debian.org/.

5. The Dart Language Web Page. https://www.dartlang.org/.

6. The New JavaScript Engine in Internet Explorer 9.
http://blogs.msdn.com/b/ie/archive/2010/03/18/the-new-javascript-engine-
in-internet-explorer-9.aspx.

7. The TypeScript Language Web Page. http://www.typescriptlang.org/.

8. The WebKit Open Source Project. http://webkit.org/.

9. V8 JavaScript Engine. http://code.google.com/p/v8.

10. V. Adve, C. Lattner, M. Brukman, A. Shukla, and B. Gaeke. LLVA: a low-level
virtual instruction set architecture. In MICRO36, 2003.

11. A. W. Appel. Compiling with continuations. Cambridge University Press, New
York, NY, USA, 1992.

12. M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo, W. Schulte, N. Tillmann,
and H. Venter. SPUR: a trace-based JIT compiler for CIL. In OOPSLA 2010.
ACM.

13. J. Cavazos and M. F. P. O’Boyle. Method-specific dynamic compilation using
logistic regression. In OOPSLA 2006. ACM.



20 Rafael Auler et al.

14. K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves, D. Subramanian, L. Torczon,
and T. Waterman. Acme: adaptive compilation made efficient. In LCTES ’05,
2005.

15. Free Software Foundation, Inc. Using the GNU compiler collection, Mar 2013. For
GCC version 4.9.0.

16. G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov, A. Zaks, B. Mendel-
son, E. Bonilla, J. Thomson, H. Leather, et al. MILEPOST GCC: machine learning
based research compiler. In GCC Summit, 2008.

17. A. Gizas, S. P. Christodoulou, and T. S. Papatheodorou. Comparative evaluation
of javascript frameworks. In 21st international conference companion on World
Wide Web, 2012.

18. M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. MiBench: A free, commercially representative embedded benchmark suite.
In IISWC 2001. IEEE.

19. M. Haneda, P. M. Knijnenburg, and H. A. Wijshoff. Automatic selection of com-
piler options using non-parametric inferential statistics. In PACT 2005. IEEE.

20. K. Hoste, A. Georges, and L. Eeckhout. Automated just-in-time compiler tuning.
In CGO 2010. ACM.

21. S. Jeon and J. Choi. Reuse of JIT compiled code in JavaScript engine. In 27th
Annual ACM Symposium on Applied Computing, 2012.

22. S.-W. Lee and S.-M. Moon. Selective just-in-time compilation for client-side mobile
javascript engine. In CASES 2011. ACM.

23. S.-W. Lee, S.-M. Moon, W.-J. Kim, S. jin Oh, and H.-S. Oh. Code size and
performance optimization for mobile JavaScript just-in-time compiler. In 2010
Workshop on Interaction between Compilers and Computer Architecture.

24. J. K. Martinsen, H. Grahn, and A. Isberg. Using speculation to enhance javascript
performance in web applications. IEEE Internet Computing, 17(2):10–19, 3 2013.

25. Z. Pan and R. Eigenmann. Fast and effective orchestration of compiler optimiza-
tions for automatic performance tuning. In CGO 2006. ACM.

26. G. Pekhimenko and A. D. Brown. Efficient program compilation through machine
learning techniques. Software Automatic Tuning: From Concepts to State-of-the-
Art Results, page 335, 2010.

27. G. Richards, A. Gal, B. Eich, and J. Vitek. Automated construction of javascript
benchmarks. In OOPSLA 2011. ACM.

28. S. Tilkov and S. Vinoski. Node.js: Using JavaScript to Build High-Performance
Network Programs. IEEE Internet Computing, 14(6):80–83, 2010.

29. N. Tillmann, M. Moskal, J. de Halleux, and M. Fahndrich. TouchDevelop: pro-
gramming cloud-connected mobile devices via touchscreen. In ONWARD 2011.
ACM.

30. A. Zakai. Emscripten: an LLVM-to-JavaScript compiler. In SPLASH 2011. ACM.
31. Y. Zhu and V. J. Reddi. High-performance and energy-efficient mobile web brows-

ing on big/little systems. In HPCA 2013. IEEE.


