Gauging Research in Program Synthesis
with a Massive Open Online Contest

Takuya Akiba! Kentaro Imajo> Hiroaki Iwami> Yoichi Iwata' Toshiki Kataoka! Naohiro Takahashi®*
Michat Moskal® Nikhil Swamy’
University of Tokyo! ~ Google?> Keio University> ~ AtCoder* Microsoft Research’
icfpc-unagi@googlegroups.com, {michal.moskal,nswamy}@microsoft.com
Abstract “Flash Fill” automatic scripting feature of Microsoft Excel (see

Program synthesis from input/output examples has received much
attention in the recent literature. Its success can be explained in
large part by significant strides made in automated theorem prov-
ing technologies, particularly in the development of satisfiability
solvers. In an effort to understand the scalability of this style of
program synthesis, we ran a three-day programming contest fea-
turing thousands of expert programmers. The results of the contest
were astounding: the winning teams produced program synthesiz-
ers that exceeded the performance of synthesis techniques reported
in several recent research papers. In one sense, this is a “reality
check” for program synthesis researchers. In another, this is cause
for great optimism—program synthesis from examples has the po-
tential to scale well beyond what we thought was possible, if only
we are willing to fine tune and employ strategies that were previ-
ously thought infeasible.

A note from the authors: The first six authors are all members of
“Unagi—The Synthesis”, the team that won the ICFP program-
ming contest 2013. When describing their role in the contest, we
refer to them collectively as “Unagi”. The last two authors orga-
nized the contest and are referred to using the first-person plural.
All the authors stand by the content of this report.

1. Introduction

A resurgence in program synthesis Automated program syn-
thesis has always been alluring. Manually developing software is
expensive and error prone, SO programming computers to write
programs instead is an attractive prospect. An active topic of re-
search since the 1970s and ’80s, program synthesis is a diverse
field. A sampling of some recent successes of program synthesis in-
clude works like Spiral [23], which generates low-level code from a
high-level digital signal processing transformation; Autobayes [9],
which synthesizes code to learn the free parameters of a probabilis-
tic model based on the observed data; GenProg [11], which uses ge-
netic programming [22] to automatically fix defects in a program;
and Sketch [24], a tool which allows a programmer to develop code
with “holes” which are automatically filled by a program synthesis
tool. Program synthesis also has applications in other fields, such
as in biology. For example, Koksal et al. [21] show how to synthe-
size executable models of cell fate development in C. elegans from
experimental data about that earthworm’s cells.

On particular sub-area of program synthesis that has caught
our attention is a technique we call example-driven (or ED) syn-
thesis. ED-synthesizers generate programs from a few examples
of the desired program’s input/output behavior. When applicable,
ED-synthesis is attractive since it provides a natural way for a
user to interact with the synthesis tool. As such, ED-synthesis
has seen significant adoption, notably in the widely publicized

http://research.microsoft. com/"sumitg/flashfillAhtml). Several re-
cent papers in this area have also been well-received at the top
ACM programming languages conferences [10, 15, 27]. In the last
few months, two papers exploring ED-synthesis have even received
“best-paper” awards [4, 8] and another has been featured as a “re-
search highlight” in the Communications of the ACM [14].

The success of recent work on ED-synthesis can be explained
in part by advances in automated symbolic reasoning, particu-
larly in satisfiability-modulo-theories (SMT) solvers. As a case
in point, consider Gulwani et al.’s 2011 work [15], which devel-
ops a tool called Brahma that can synthesize sequences of tricky
“bit-twiddling” instructions from user-provided input/output exam-
ples. For example, to turn off the rightmost 1-bit in a bit-vector,
the user may provide to Brahma the following set of examples:
{01100 -> 01000, 00000 -> 00000}. Brahma responds with
a program such as £(x) = x & (x - 1), a function that agrees
with the user’s examples. To effectively search the space of pro-
grams that matches the user’s specification, Brahma cleverly en-
codes the synthesis problem as a first-order logic formula which
can be effectively solved by an SMT solver like Z3 [6]. When suc-
cessful, Z3 provides a model for the formula from which Brahma
can read off a solution to the original synthesis problem.

Brahma is able to synthesize programs that contain sequences
of up to 16 instructions, where each instruction is drawn from a set
of around a dozen bit-manipulating primitive operations. Brahma’s
running time on these examples range from 1 second to 45 min-
utes. In comparison, two other non-SMT-based tools that Gulwani
et al. compare against fail to synthesize any program longer than 6
instructions long within their timeout of 1 hour. As such, Brahma
represents an enormous stride over the prior work. Quoting the pa-
per: “The winning advantage comes from the fact that we ride upon
the recent engineering advances made in SMT solving technology
[...] as opposed to explicitly performing an exhaustive enumeration
over an exponential search space”.

Following Brahma, all the other papers cited earlier ([4, 8, 10,
15, 27] and several others besides) make use of SMT solvers to
effectively solve synthesis problems that were out of reach previ-
ously. Impressed by the work of our colleagues (full disclosure:
Gulwani and the authors of Z3 are our colleagues at Microsoft Re-
search), we got to wondering: is this as good as it gets? Synthe-
sizing 16 straight-line instructions in under an hour is undoubtedly
impressive, but typical human-authored functions are significantly
larger. How far can ED-synthesis go?

The experience of various solver competitions suggests that a
very good way to answer such a question is through a contest.
Over the years, various competitions have been used to accel-
erate research on solving techniques and tools for various hard

2014/4/28

http://research.microsoft.com/~sumitg/flashfill.html

problems—first-order theorem proving (the CASC competition
started in 1996 [25]), Boolean satisfiability solving (SAT Com-
petition started in 2002 [18]), satisfiability modulo theories (SMT-
COMP started in 2005 [3]), and more recently model checking [5]
and software verification [16]. Such competitions are widely re-
garded as successful in raising the profile of the sub-field as well as
improving quality, performance, availability, and interoperability
(via a common input format) of solvers. The typical setup involves
researchers being asked to submit their tools, which are then run
on a number of benchmark problems. The performance of solvers
is compared according to (very detailed) rules set in advance and
the winner (usually one per category of problems) is announced,
given some small prize and, most importantly, bragging rights.
Further afield, contests such as the DARPA Grand Challenge, the
ImageNet Challenge, and the NetFlix Prize have spurred research
in areas such as robotics, image recognition and machine learning.

A golden opportunity to do something similar for program syn-
thesis came by way of the ACM International Conference in Func-
tional Programming’s Programming Contest (ICFP-PC). Held an-
nually since 1998, the ICFP-PC features teams of 1-20 program-
mers working for 72 hours to complete a challenging program-
ming task using programming languages and tools of their choos-
ing. Over the years, this contest has gained a reputation of identify-
ing the best hackers in the world, and in recent years has regularly
featured more 1000 programmers (self-organized into around 300
teams) competing for the top prize—bragging rights occasionally
accompanied by a modest cash prize funded by the ACM. That’s
many thousands of hours of expert-programmer time, an enormous
resource that the contest organizers must put to use each year,
mostly for recreation but occasionally also for scientific value.

The contestants of the 2013 ICFP Programming Contest were
set an ED-synthesis task very like the problem addressed by tools
like Brahma. Following tradition, the contest task was a secret! un-
til the contest opened on August 8, 2013. Our goal was to compare
what an army of expert programmers could achieve in 72 hours,
relative to the state of the art in the research literature.

The results of the competition bowled us over. The best team
(and others in the top 5) automatically synthesized programs that
contained up to 51 instructions in less than 5 minutes, and they only
had 72 hours to develop the synthesizer. Unlike the straight-line
code over 32-bit vectors synthesized by Brahma and related tools,
the contestants synthesized programs involving 64-bit vectors that
also included conditionals and bounded loops; on the other hand,
programs synthesized by Brahma also had more constants. While
preparing for the contest, we implemented several several varia-
tions of the SMT-based synthesis algorithms like Brahma, but none
of them scaled beyond 17 instructions within the 5-minute window.

The rest of this paper describes the way we set up and ran the
contest, the strategies used by some of the highly ranked teams, and
compares the outcomes of the contest more closely with the related
work in ED-synthesis. In summary, the best teams were aware of
the SMT-based program synthesis literature, but after some initial
experiments, chose not to use it. Instead, Unagi—The Synthesis,
a group of 6 Japanese programmers (currently undertaking or
having recently completed their undergraduate studies) developed a
custom nearly exhaustive search procedure that used a combination
of offline and online search, parallelized to use 1000 hours of
compute-time on the Amazon EC2 cloud and won the contest by
a comfortable margin. We take away the following points from our
experience:

e Talented young hackers are not to be underestimated!

'In an effort to also draw some of the experts in program synthesis to the
competition, we dropped a hint a few weeks earlier mentioning just that
“[the] programming task will involve an element of program synthesis” .

e Custom-built domain-specific approaches to program synthesis
problems can provide a big boost to scalability. This is not
surprising. Green and Barstow make this observation as far back
as 1978 [12]. Additionally, Gulwani et al.’s more recent efforts
on automatic text processing [14] also employ domain-specific
reasoning independent of SMT solvers.

There is still a long way to go before we hit the ceiling of ED-
synthesis. As one begins to scale up to and beyond the size
reached by Unagi and the other contestants, it may actually be
feasible in the near future to synthesize genuinely non-trivial
pieces of code by example.

e The path towards scaling program synthesis may well be
through cloud computing. Exhaustively enumerating and stor-
ing terabytes of program snippets is perfectly viable in the
cloud, and it may be the best way to integrate serious program
synthesis into the simple, syntactic code-completion features
available today in program development environments (IDEs),
where fast response times are crucial. Effectively parallelizing
the search to use the vast computing resources that are now
readily available in the cloud is also key.

e Programming contests at the scale of the ICFP-PC garner the
the attention of thousands of expert programmers for a few
days. This is a very valuable human resource! Finding ways
to harness this resource to pose and answer scientific questions
is a both an opportunity and a challenge facing our community.
Turning ED-synthesis into a game was relatively easy, at least
in hindsight. What other questions might we use the ICFP-PC
to answer in the future?

A few disclaimers. The main purpose of this paper is to illustrate
how a large, open competition can be used to gauge the current
state and future potential of a research topic. We focused specif-
ically on ED-synthesis for a few reasons: (1) it has been studied
extensively in the literature; (2) with a little careful thought, it can
be formulated as a game—an essential feature of a competition; (3)
many instances of the game can itself be synthesized—essential
for a massive competition. We make no independent claims about
the scope of ED-synthesis in general, the practical usefulness of
contest problems, or what conclusions one might draw about the
diverse field of program synthesis from the results of the competi-
tion. While we do give descriptions of the some of the techniques
used by the winning teams, a precise description and evaluation of
these algorithms is beyond the scope (and page limits) of this paper.

2. Running the contest

Inspired by the coding duels at http://pex4fun.com [26], the contest
was designed as a guessing game played between a game server
and a player that went as follows:

Game: [have a secret program A, and I want you to guess it.

Player: Can you tell me what A(16), A(42) and A(128) are?

Game: Sure, A(16) = 17,A(42) = 43,and A(128) = 129.

Player: Is it the program BO, where BO(x) = x + 1?

Game: No dice, A(9) = 9,butB0(9) = 10.

Player: What are A(11) and A(12) then?

Game: Since you ask so nicely: A(11) = 11, A(12) = 13.

Player: Is it the program B1, where
Bi(x) = if0 ((x & 1) ~ 1) then x else x + 1

Game: That’s right! You score one point.
I have a secret program A’, and want you to guess it.

Player: Argh!!!

2 2014/4/28

http://pex4fun.com

0] = 1] = | -
|(lambda (x) €)| = 1+]e

|[(opeg ... en)| = 1+|eo|+...+|en]
[(i£0 eg €1 €3)| = L+leo|+]er]+]ez]
|(fold ep e; (lambda (xy) e2))| = 24 |eo|+ ler|+ ea]

Figure 1. Defining the size of a program

Such an interaction constitutes one round of the game. Of
course, the player has to guess a program that is semantically
equivalent to the secret, e.g., the program B2 where B2(x) =
ifO ((x & 1) -~ 0) then x + 1 else x, would also have
been a correct guess, since it computes the same function as B1.

In this section, we summarize the rules of the game, various
measures we put in place to ensure that the game was both fun and
fair, and the technological challenges we had to overcome in order
to stage a game of this scale.

2.1 Rules of the game

Each round of the game lasted a maximum of 5 minutes, i.e., the
contestants had at most 5 minutes to guess the program. Many
rounds of the game could be played in parallel, if the contestant
so desired. A maximum of 1,820 rounds could be played within the
72 hours of the contest, allowing a maximum score of 1,820 points.

The game rules specified that the secret programs were all
programmed in ABV, a small programming language in which to
express functions over 64-bit vectors. ABV’s syntax was based
on S-expressions for ease of parsing. An example program is:
(lambda (x) (and x (plus x 1))).ABV included the follow-
ing primitive operators (all bit-wise): negation (not); shift left by
one bit (shll); shift right by one (shril), four (shr4), or six-
teen bits (shr16); conjunction (and); disjunction (or); exclusive
or (xor); and addition (plus). The only constants in the language
were 0 and 1. Additionally, the language included a conditional
form to branch after testing whether a value is 0 (1£0), and a fold
operator to loop over each byte of a bit-vector from right to left with
an accumulator. The semantics of ABV programs is quite straight-
forward and was not formally specified—contestants could experi-
ment with the game server to confirm that their interpretation of the
semantics matched ours.

The 1,820 rounds of the game were classified into five broad
classes. When the contest began, only the following three classes
were made known—the remaining two were presented as bonus
problems later (cf. §2.4).

1. Fold-free problems Anticipating that synthesizing programs
with loops would pose a significant challenge, we restricted 560
rounds of the game by revealing to the contestant that the secret
program made no use of the fold operator.

2. Top-fold problems 460 rounds revealed to the contestant that
the secret program began with an occurrence of the fold oper-
ator, and contained no further occurrence of fold.

3. General-fold problems 400 rounds revealed to the contestant
that the secret program contained one or more occurrence of
fold, but with no further constraints.

In each case, the contestants were also told the size of the secret
program (i.e., the number of sub-terms it contains, as defined in
Figure 1), as well as the set of all operators in it. The fold-free
problems ranged in size from 3 to 30; with 20 programs in each
size class; the top-fold programs ranged in size from 8 to 30 with
20 programs in each size class; while the general-fold problems
ranged in size from 11 to 30, also with 20 in each size class. In
total, these three classes represented 1,420 rounds of the game.

As an illustration, if a secret program in the fold-free class was
(lambda (x) (and x (plus x 1))), we would reveal to the
contestant that the program was of size 6 and that it only contained
the operators and and plus. For fold-free programs of size 3, this
information was sufficient to uniquely determine the program—
this was by design; we wanted to start contestants off on easy
problems so that they could score a few points and be encouraged
to continue participating. However, the problems increased quickly
in difficulty—for programs larger than size 12, the information we
revealed about the set of operators it contained was usually useless,
since it typically contained all the operators in the language (aside
from information about the (non-)occurrence of fold).

2.2 The logistics of running the game

Contestants interacted with the game through a programmatic web-
interface that we designed and implemented. The first task for con-
testants was to implement the client side of this interface—fairly
easy given support for HTTP requests and common marshalling
formats available as libraries in most languages. However, ensur-
ing that our game server stayed running throughout the duration of
the contest required some effort on our part.

Deciding equivalence A key step in staging the game involves
checking whether a user successfully guessed the secret program.
This involves proving that the guess and secret are semantically
equivalent. However, classic results from the theory of computation
make it clear that deciding whether two programs are semantically
equivalent is impossible, at least in the general case.

With this in mind, we carefully designed ABV with restrictions
to ensure that program equivalence is decidable. In particular, ABV
programs only have bounded loops that can be unrolled completely.
Proving the equivalence of loop-free programs is decidable, al-
though still not easy to do efficiently.

Our approach was to make use of Z3 to also solve the prob-
lem equivalence problem. Specifically, after unrolling all loops, we
encoded ABV programs as a formula in Z3’s input language, mak-
ing use of its support for reasoning about bit-vectors. Given two
such programs encoded as formulas, equivalence of the programs
amounts to proving equivalence of the formulas. Z3 first performs
a number of rewriting, and then usually resorts to “bit blasting” the
formulas into logical circuits over propositional variables and uses
its SAT-solving capabilities to find satisfying assignments to those
variables.

SAT-solving is NP-complete, so the problem is decidable. But,
the SAT instances that must be solved for deciding the equivalence
of ABV programs may have upwards of a million clauses. Effi-
ciently solving these SAT instances is a computationally intensive
task that is also key to staging the game: with only a five minute
window for each round of the game, and anticipating that a round
would involve several guesses, we needed to ensure that validat-
ing a guess would not take more than a few seconds. From some
experiments, we concluded that Z3 could effectively solve the ma-
jority of ABV equivalences in less than 20 seconds. Our experiments
were validated over the course of the competition: Z3 successfully
decided around 350,000 program-equivalence queries, taking 1.25
seconds on average, although it did exceed 20 seconds in around
421 cases, a success rate of 99.88%. Our servers also handled an
additional 400,000 requests for training problems and evaluating
secret programs on user-provided inputs.

Elastic scaling in the cloud Since validating a guess could con-
sume as much as 20 seconds of processor time, a major concern
for us organizing the game was to ensure that we had sufficient re-
sources to efficiently handle requests from the 300+ teams that were
competing. Our approach to managing this was to make use of the
elastic cloud computing platform provided by Windows Azure.

2014/4/28

#regs/sec, max: 39.12, 52h cores used, max: 22.92, 52h

d

Figure 2. The graphs show the requests-per-second (left) and the
number of processor cores used by our game servers (right) during
the last 52 hours of the contest. Near the end of the contest, our
game server was processing nearly 40 requests per second on 23
processor cores.

This involved reserving capacity for up to 128 processing cores
in the cloud, with additional 128 for swapping test and production
deployments. We used 4-core instances communicating via Azure
table storage. Initially, we started with only 2 instances (for redun-
dancy, 1 would be in fact enough), but as the number of requests
and server load crossed pre-defined thresholds, we configured the
cloud service to bring more cores online.

As it turned out, we had much more capacity than we actually
needed. The graph at the left of Figure 2 show the frequency
of requests we received for the last 52 hours of the competition.
Requests spiked first at the 24 hour mark (the end of the “lightning
division” of the contest), and then peaked at nearly 40 requests per
second at the very end of the contest. The graph at the right shows
the number of utilized processor cores (or rather CPU seconds
per real-time second), peaking at almost 23 cores. In fact, playing
it safe, we had usually 2-3 times more cores running than was
needed—towards the end we had 64. Still, the final bill for the
compute resources was well below 500 USD.

2.3 Balancing fairness and fun

When refereeing an academic conference, one can generally as-
sume that the participants are acting in good faith. An informal
system of academic incentives and reputations ensures that no ma-
licious actors are actively trying to compromise the academic peer-
review process. Staging a competition like the ICFP-PC is a dif-
ferent kettle of fish. The contest attracts many anonymous partic-
ipants, the web servers are widely publicized and can be freely
accessed from anywhere, and winning the contest brings enough
fame (or notoriety) that someone may attempt to subvert the game.
In past years of the ICFP-PC, the game server has been subject to
denial-of-service attacks. Keeping things fair, while still ensuring
the game was fun, required some careful design.

Pre-registration Prior to the start of the contest, teams had to
register their intention to participate by creating an account on
EasyChair.org, a popular conference management web-site. The
purpose of pre-registration was left unspecified (which drew some
criticism on various public forums). Once the contest began, we
provided each pre-registered team with an authentication token
which gave them access to the game servers. Informally, keeping
the purpose of pre-registration secret helped to minimize the prob-
lem of teams pre-registering repeatedly in an attempt to accumulate
multiple authentication tokens.

Throttling user requests Any well-intentioned team should
spend most of the 5-minutes available in each round in search-
ing for a solution, rather than bombarding the server with requests.
Having assigned unique tokens to each team, we were able to rate-
limit the requests that any team could make. Each token entitled
a team to make up to 5 requests in any 20-second window and
use up to 20 CPU seconds in any 60 second window. Additionally,

these limits would be automatically tightened should the servers
get over-loaded. This, however, did not happen during the contest.

Timeouts We gave the game server 20 seconds to check the va-
lidity of a guess. As mentioned earlier, our experiments with Z3
suggested that this timeout would be exceeded only very rarely.
However, knowing that timeouts would occasionally happen, an ad-
versarial team may attempt to craft particularly convoluted guesses
designed to cause Z3 to timeout. To deter such a strategy, the game
rules specified clearly that when the server exceeds the 20-second
timeout, the guess is considered to be invalid and no point is scored.
In the rare cases where timeouts occurred, this led to some frustra-
tion with the contestants. To mitigate these concerns, after the con-
test concluded, we re-ran Z3 on those timed out guesses and gave
additional credit to each team if their guesses were in fact correct.
This had no impact on the final ranking of teams.

Minimizing collusion Teams may have attempted to subvert the
game by colluding. If all teams were assigned identical problems
in each round, one team could partially solve a round, and then
run out of time to complete it. They could then hand off the partial
solution to another team for completion. To prevent this, each team
was assigned 1,420 randomly chosen problems from a set of around
100,000 problems. The distribution of these 1,420 problems was
arranged so that every team received the same number of problems
in each category and size class.

Training problems Each team could also request randomly cho-
sen training problems in a particular class and size category. In a
training round, the secret program was revealed to the contestant at
the start of the round. Of course, training rounds scored no points,

Problem generation Generating 100,000 secret programs is in it-
self not an easy problem. We followed a relatively simple approach
for the first three categories of problems. We randomly generated
several thousand programs in each size and class category, ensured
that these programs had no dead sub-expressions in them, and then
weeded out those that failed various simple tests (e.g., those whose
results appeared to be constant on a few randomly chosen input
points), ensuring that we retained around 1,000 programs in each
size and class.

An element of chance Our simple problem generation strategy
left (what we thought was) an exciting element of chance in the
game. The class and size of a secret program was not necessarily a
measure of the semantic complexity of the function it computed—
a syntactically large secret program could be optimized to a much
smaller program. This was designed to keep the problem interesting
for as many teams as possible. We did not expect the majority
of teams to be able to effectively win rounds where the secret
function to be guessed needed more than around 12-15 terms to
be computable in ABV—except for the very best teams, this turned
out to be true. However, our problem generation strategy meant that
average teams could still score points in the more difficult problem
categories by finding relatively small solutions.

Of course, we did not want the whole contest to devolve into
a game of chance. So, we also had two classes of bonus problems
that were designed differently—we describe this next.

2.4 Bonus problems

It is typical for the ICFP contests to modify the rules in the mid-
dle of the contest. Maintaining this tradition, with roughly 24 hours
remaining in the contest, we released 200 bonus problems; with
around 18 hours to go we released an additional 200 bonus prob-
lems. Our expectation was that the winning team would be clearly
identified by their performance on these bonus problems, with no
element of chance. As such, each team was assigned exactly the
same 400 bonus problems, but each problem was assigned a ran-

2014/4/28

EasyChair.org

domly chosen identifier for each team, minimizing their ability to
correlate problem instances between teams and their ability to col-
lude.

Unlike the problems in the first three classes, each bonus prob-
lem was chosen in a way that ensured that there were no simple
solutions to the problem. To do this, we decided to randomly mine
difficult program nuggets. Specifically, our approach to generating
hard problems was to start by randomly generating a fold-free pro-
gram P of size n. We then used Z3 to check that there exists no ABV
program of size k or smaller that computes the same function as P.
If the check succeeds, then we consider P a k-nugget, meaning that
it can only be solved using a program of size k or greater. From such
nuggets, more complex programs can be built. Given three nuggets,
Py, Py, P3, the program (if0 (and P; 1) P, P3) is also likely to
hard to reduce further (so long as the parity of P;’s low-order bit
is not constant, which is easy to prove with Z3). By repeating this
process, nearly arbitrarily large programs can be built.

Proving that a program cannot be optimized to use less than, say,
10 terms is quite computation- cpu
ally intensive. In effect, one has
to enumerate all programs up][O0 e P
to size 9, which can number in ‘
the 10s or even 100s of mil-
lions. Doing this consumed sev-
eral days of CPU time, running 100% 325cH:

Z3 on all 32 cores of a work- 50, sr sorve
station, searching for nuggets, as
the CPU-utilization screenshot
alongside shows.

Our first set of 200 bonus problems were fold-free programs of
size between 19 and 25, composed of 5-nuggets. The second set
of 200 bonus problems were fold-free problems between size 31
and 43 and were built from 9-nuggets. We also provided training
problems in these categories, so contestants could reverse engineer
that these programs had a particular branching structure.

Intel(R) Xeon(R) CPU ES-2690 0 @ 2.90GHz

18:13:51:56

2.5 Discussion

The task that the contestants faced most closely resembles the prob-
lem of reverse engineering or deobfuscating a program—an exam-
ple of this problem in the program synthesis literature is the work
of Jha et al. [19]. A related problem also studied in the synthesis
literature is super-optimization, which has the additional constraint
(not imposed on our contestants) that the synthesized program be
minimal in some regard, e.g., have the fewest number of instruc-
tions to carry out the required functionality. Neither reverse engi-
neering nor super-optimization is a perfect characterization of the
problems tackled by ED-synthesis researchers. However, the prob-
lem of synthesizing bit-vector programs from examples is known
to be hard, and has been studied extensively in the literature. As
such, the contest task was not without precedent.

The reader might also wonder about the specific problem gen-
eration strategies we used. For example, rather than generating ran-
dom problems, one might have considered selecting some set of
“useful” problems. However, keeping the nature of the contest in
mind, useful problems are an unworkable choice, since a contestant
might then be able to win the contest just by guessing some com-
mon programs, rather than actually solving the synthesis problem.
Besides, it’s unclear how one might devise an automated strategy
for generating thousands of useful programs.

The question of generating useful problem instances is a par-
ticularly interesting direction for future research, since randomly
generated problem instances may be artificially difficult. For ex-
ample, in the SAT Competition there are different tracks for ap-
plication, crafted, and random instances, with different solvers, us-
ing different techniques, claiming top spots. The sizes of instances

in the categories are also radically different—in 2011 the small-
est unsolved crafted instance had 141 variables, whereas typical
application instances sported millions [18]. We hope for the cre-
ation of such a set of useful benchmarks in different categories
for ED-synthesis. For what it’s worth, we have contributed 320
bonus problem instances from the ICFP competition to researchers
who are organizing a synthesis competition at FLOC 2014 (see
http://www.sygus.org/).

3. Outcomes of the contest and winning strategies

Unagi—The Synthesis, a 6-member Japanese team, won the contest
by scoring 1,696 out of a maximum of 1,820 points. The second
place team, F5 Attackers, a 5-member Japanese team, scored 1,608.
Third place was taken by Hack the Loop, 10 Russian programmers,
who scored 1,499 points. The next 15 teams were bunched closely
together, with only 100 points separating them all. As such, Unagi
was the clear winner. We also gave a judges’ prize to a team called
Kuma- for a particularly short solution in Ruby developed while
hacking an experimental garbage collector to improve performance
of the language runtime. A “lightning prize” was also given to team
ITF for having the highest score 24 hours after the contest began.

Our own colleagues who research program synthesis were ex-
cluded from the competition due to a conflict of interest. However,
we were informed that other prominent researchers in the program
synthesis field did participate in the competition. Their strategy was
to use a combination of exhaustive enumeration and SMT solving,
but they did not finish higher than rank 90.

In the remainder of this section, we focus primarily on the
techniques employed by Unagi (as well as some of the other teams
who ranked in the top 25) to win the competition. Our description
is based on the following sources of information.

e A short survey that all teams were required to complete at the
end of the competition.

e A more detailed questionnaire that we requested all the teams
ranked in the top-25 to complete.

e The logs maintained by our game server which records the
sequence of interactions with the game made by each team.

e Discussions while preparing this report among all the authors
of this report, specifically addressing various details of Unagi’s
solution.

At ahigh level, Unagi employed three strategies: offline exhaus-
tive enumeration, heuristic online search, and a technique that we
will call “stitching” conditionals. For the latter two strategies, Un-
agi deployed up to 64 variants of the heuristics in parallel, dynam-
ically selecting the best one for each problem. We describe their
strategies by recalling a few of their interactions with the game.

3.1 Offline exhaustive enumeration

e At 2013-08-11T06:40:56, Unagi begins a round involving a
size 17, fold-free program. They know beforehand that the se-
cret program contains the following operators: {xor, shri,
shr4, not, or, plus, ifO}—only shri6 and and are ex-
cluded. The game server’s clock for this round begins to tick—
Unagi have five minutes to guess the program.

At the same time, Unagi request that the secret program be
evaluated on 256 input points. The server responds almost im-
mediately with the output of the secret program on these input
points. The provided inputs include some common bit patterns,
e.g, and all powers of 2 and bit-wise negations of the powers
of 2. The input set also contained randomly generated numbers,
conjoined with 1,3,7,15,..., as well as the bit-wise negation of
those numbers. This set of inputs was fixed for all rounds.

2014/4/28

http://www.sygus.org/

e Around four seconds later, at 2013-08-11T06:41:00, Unagi
guesses that the secret program is:

(lambda (x)
(if0 (shril x)
(or x (shr4 (not (shri (mot 0)))))
(xor x (shr4d (mot x)))))

The secret program is in fact:

(lambda (x) (xor (shr4 (mot
(or (shr1l (if0 (plus (shll (shrl x)) 0) (nmot 0) 1))
x))) x))

It takes the game server a bit more than 1 second to prove
that the guess is semantically equivalent to the secret. Unagi
synthesizes a program of size 16 in less than 4 seconds and
scores another point.

How did they do it? The primary strategy used by Unagi was
offline exhaustive enumeration of programs. Knowing the opera-
tors in the secret program and the size of that program, they were
able to exhaustively enumerate all programs up that size. Various
pruning strategies were used to reduce the number of programs. In
each round, Unagi enumerated around 100 million programs of-
fline. In rounds where the size of the program was at most 15, this
enumeration was guaranteed to be exhaustive.

Size- and operator-based pruning. Unagi enumerated programs
in increasing order of size, generating programs of size k+ 1 by
adding operators to each program P of size k or less. If they were
able to determine that there was no way to produce a term of the fi-
nal desired size and operator set from P, then it was discarded from
further consideration. For example, knowing that a secret program
size of 15 contains both or and 1£0, a program P of size 11 that has
no occurrence of or and i£0 cannot be a sub-term of the secret pro-
gram (since adding both operators to P would increase its size by
at least 5). Interestingly, knowing that the target program has size
less than or equal to 15 allowed Unagi to exhaustively enumerate
all programs up to that size. But, for larger examples, knowing that
the size was, say, 30 did not provide as much information—in such
cases, they were only able to exhaustively enumerate programs that
were up to size 12 or 13, still numbering in the 100s of millions.

Semantic pruning rules. Unagi also implemented scores of rules
that pruned the search space by exploiting algebraic properties of
the operators to normalize the generated programs, e.g., not is an
involution; and and or are commutative and associative; etc.. More
sophisticated rewrite rules were also used to normalize the gen-
erated programs, e.g., (not (if0 x (not y) z)) was normal-
izedto (if0 x y (not z)).When enumerating programs, if any
rewrite rule could be applied to a program, it was discarded.

Having enumerated programs offline, they evaluated all of them
on the pre-chosen set of 256 input points. Then, after querying the
game server for the outputs of the secret program, they simply
responded immediately with one of the previously enumerated
programs that matched the outputs.

3.2 Online heuristic search

e At 2013-08-11T17:20:51, Unagi attempts a top-fold prob-
lem of size 23. They know that the secret program does not
contain any occurrence of and, shri16 or not. As usual, they
request the output of the secret program on their pre-chosen
256 inputs.

¢ 4 minutes and 53 seconds later, they guess the following pro-
gram of size 14, and score one point (it takes us 1.2 seconds to
check the guess).

(lambda (x)
(fold x O
(lambda (y z)
(shll (or z (if0 (shr4d (shlil y)) 0 1))))))

For larger problems, size- and operator-based pruning is not
effective. So, Unagi also used various heuristics to optimize an
online search, i.e., searching for nearly the full five minutes to find
a matching program.

Output equivalence classes. One incomplete but apparently ef-
fective heuristic involved treating all programs that produce the
same results on the 256 inputs to be in the same equivalence class.
When generating a larger program from some already enumerated
smaller programs, only one element of each equivalence class of
the smaller programs was chosen. This may lead to incompleteness,
since programs in an equivalence class may not truly be function-
ally equivalent.

Syntactic heuristics. By studying the training problems, Unagi
learned that the secret programs often had a particular structure,
e.g., the expression trees are biased towards being unbalanced.
So, they aimed to enumerate unbalanced trees first. We think it is
unlikely that this particular heuristic was very effective, however
in other cases syntactic heuristics were essential to solving the
problem. For example, the class of top-fold problems inherently
restricts the search space to those programs that begin with a fold
operator. By examining the training problems, Unagi were able to
discover other valuable hints, e.g., that the initial accumulator in
top-fold problems was always zero.

3.3 Stitching conditionals

e At 2013-08-11T22:28:33, Unagi attempts a bonus problem
of size 43 and evaluate the secret program on their favorite 256
inputs.

e Over the course of the next 3:45 minutes, they guess incorrectly
5 times, each time obtaining a counterexample from the game
server. Finally, they guess correctly with the program below (of
size 51!):

(lambda (%)
(if0 (and 1 (shrl x))
(if0 (shrl (shr4 x))
(if0 (and 1 (shrl (shril x)))
(or 1 (not x))
(if0 (and x 1) 0 1))
(if0 (shr16 (not x))
(not (xor x 1))
(or 1 (mot x))))
(if0 (and x 1) O
(if0 (not (or x (shr4 x))) 0 1))))

Each incorrect guess leads them closer to the final answer.
For example, their last incorrect guess is shown below: it only
differs from the final answer in the guards and arrangement of
some of the conditionals.

(lambda (x)
(if0 (and 1 (shril x))
(if0 (and x (shrl (shrl x)))
(or 1 (not x))
(if0 (shrl (shr4 x))
(if0 (and x 1) 0 1)
(if0 (shri6 (not x))
(not (xor x 1))
(or 1 (mot x)))))
(if0 (and x 1) O
(if0 (mot (or x (shr4 x))) 0 1))))

2014/4/28

This interaction illustrates one of Unagi’s major online search
strategies. Rather than trying to find a single large program that
matches the input/output relation, Unagi searched for a set of
smaller programs that together covered the relation. Having found
this set, they aimed to find other small terms that would serve as
the switching logic—we call this technique stitching. When com-
bined with the other techniques, this often allowed Unagi to find
solutions to extremely large problems in a structured way. From
our inspection of the logs, it seems evident that stitching was a
key technique that enabled solving many of the larger problems,
especially the bonus problems.

Semi-directed search strategies. Underlying Unagi’s stitching
algorithm lay a variety of semi-directed search strategies based
on simulated annealing and hill-climbing. Indeed, their interactions
with the game server indicate that they often arrived at the solution
gradually—starting with a term that was almost functionally equiv-
alent to the secret and then making small changes to it syntactically
until they arrived at the solution—as is evident in the difference
between that last incorrect guess and the final solution in the inter-
action above. Unagi simply used the number of input/output pairs
that were properly classified as a metric to rank partial solutions.

3.4 Parallel deployment of heuristics in the cloud

In just three days, Unagi had developed a wide range of sophisti-
cated heuristics, each tunable by various parameters, with no single
heuristic dominating the others. The final element that made Un-
agi victorious was their effective use of parallelism and large-scale
compute power.

Unagi deployed their solution on Amazon’s EC2 cloud. Their
solution consisted of many strategies and heuristics running simul-
taneously for each round. They played up to four rounds in parallel,
with 32 threads running independent strategies in each round. They
even went to the extent of using the Tokyo location of EC2 for
development, while deploying their contest-ready solution in the
Richmond, Virginia data center of EC2 for proximity to our own
Windows Azure servers in the Northeast United States. Over the
course of the contest, Unagi estimated using around 3000 hours of
compute time on EC2, which cost them less than 80 USD (easily
covered by the 1000 USD prize money that they later received from
ACM SIGPLAN).

Unagi programmed in 7 different languages, reflecting the pref-
erences of the various team members. 1000 lines of Java in 10 vari-
ations and 1000 lines of C# in 10 variations ran the main search
algorithms. 2000 lines of C++, 1400 lines of PHP, and 300 lines
of Shell managed the parallel deployment and various utilities. 700
lines of Ruby and 100 lines of Haskell were used for other tools.

4. Gauging recent work on ED-synthesis

Unagi and many other contestants studied many of the recent re-
search papers in program synthesis, including several of the papers
cited here. Several teams even implemented prototype solutions us-
ing the SMT-solving strategies described in current research, but
most well-placed teams abandoned the use of SMT solvers for
the contest itself, relying instead on various ad hoc search strate-
gies. Some of Unagi’s strategies described in §3 have also been
discovered independently by other researchers. For example, the
stitching technique has also been reported in several recent pa-
pers [1, 17, 20].

In this section, we briefly review the results from several recent
program synthesis papers and conclude with a summary of lessons
learned from the Unagi experience. Our treatment is necessarily
brief, and focuses primarily on research in component-based, in-
ductive program synthesis—Gulwani provides a useful survey [13].

Synthesis of loop-free programs [15]. As mentioned previously,
this paper was among the first to propose using SMT solvers as an
alternative to ad hoc synthesis strategies. Gulwani et al. develop a
technique to encode synthesis problems as constraints in an SMT
solver, given the multi-set of operators in the secret program to
be synthesized, and a set of input/output examples. The multi-set
of operators is more information than we provided to the ICFP-
PC contestants. We also provided the size of the secret term, but
given the multi-set of operators, one can easily recover the size.
Gulwani et al. report being able to synthesize programs up to size
16 in 45 minutes—this performance is comparable to what we
achieved with our test solution, which was significantly below what
the winning teams managed.

From Relational Verification to SIMD Loop Synthesis [4]. This
best paper from PPoPP ’13 makes use of inductive synthesis to
vectorize computations in a loop so they can take advantage of the
SIMD hardware present in modern CPU architectures. One key in-
novation of the paper is independent of program synthesis—it re-
lates to proving that the optimization is sound. However, the core
synthesis problem is solved using a combination of a enumera-
tive search technique combined with an SMT solver. The input to
the synthesis tool is a logical specification of the pre- and post-
condition of the program to be synthesized. The tool enumerates
programs that match the specification on some subset of the inputs,
then uses an SMT solver to generate counterexamples, from which
the synthesized program is generalized to cover more inputs. This
enumerative technique is augmented with various pruning heuris-
tics and scales to the generation of up to 9 vector instructions in
just 0.12 seconds. Our experience with Unagi suggests that smarter
enumerative search techniques, when run at cloud scale, can scale
several orders of magnitude further.

An SMT based method for optimizing arithmetic computations
in embedded software code [8]. This best paper by Eldib and
Wang from FMCAD °13 makes use of an SMT-based synthesis
technique to expand the dynamic range of arithmetic instructions
while excluding overflow. The authors use the SMT solver Yices [7]
in their experiments and are able to synthesize programs of up to
7 instructions in a few seconds. Their technique is a combination
of enumerative search with SMT solving. It works by fixing a
syntactic skeleton of the program, using an SMT solver to fill in the
skeleton. If this fails, the size of the skeleton is increased, and the
process is repeated. Although the experiments reported in the paper
show only that the technique scales to 7 instructions, the authors
claim in private communication that they were able to scale it to 18
instructions using more than an hour of search time. Unfortunately,
we are unable to independently verify these claims since, at the
time of writing, Eldib and Wang were unable to provide the data
and tools mentioned in their paper.

TRANSIT: specifying protocols with concolic snippets [27]. Not
all researchers use SMT solvers for synthesis. Udupa et al. de-
velop a purely enumerative exhaustive search technique for induc-
tive synthesis, and implement it in a tool called TRANSIT. The
main idea they use to prune the search space is similar to Unagi’s
“output equivalence class” technique described in §3.2. Given a set
of input/output examples, TRANSIT enumerates programs in in-
creasing order of size. At each size class, TRANSIT buckets pro-
grams into equivalence classes, where the elements of an equiva-
lence class have the same behavior on the inputs in the provided
examples. Only a single representative of an equivalence class is
retained when iterating to the next size class. When a candidate pro-
gram synthesized by TRANSIT does not satisfy the desired specifi-
cation, a counterexample is added to the set on input/output exam-
ples, and the enumerative process is repeated from scratch. The tool
produces programs of up to 15 instructions in at most 15 minutes.

2014/4/28

Syntax-guided synthesis [2]. This recent paper by Alur et al. has
an objective similar to our objective in this paper: they seek to de-
velop a set of standardized benchmarks for program synthesis, and
evaluate three existing example-driven inductive program synthe-
sis tools on those benchmarks. The authors of this paper include
researchers who are known for their work on several different pro-
gram synthesis tools in the past—it’s great to see them come to-
gether to evaluate their tools on common ground, and to set up a
framework against which future tools can also be evaluated. They
find that an enumerative solver similar to the one used in TRAN-
SIT is the most efficient of three strategies they consider—the other
two being an SMT-based approach, and a stochastic approach. As
in TRANSIT, the enumerative solver is able to find up to 15 in-
structions in at most 1000 seconds. Surprisingly, in contrast with
Gulwani et al.’s experience with Brahma and with our own experi-
ence evaluating an SMT-based test solution to the ICFP-PC, Alur
et al. fail to scale their SMT-based solution to programs of size
15, even on the same benchmarks on which Brahma succeeds—
this suggests that the precise encodings of synthesis problems in an
SMT solver are of crucial importance. Ideally, we would have liked
to evaluate Unagi’s solution head-to-head with Alur et al.’s tools.
However, at the time of writing, we have not yet been able to repro-
duce their results. We plan to continue our discussions with them
and hope to be able to conduct such a head-to-head comparison in
the near future.

5. Conclusions

If a synthesis problem is really worth solving (e.g., super-optimizing
fragments of performance-critical code, or providing synthesis ser-
vices in an program editor at user-interaction speed), then throwing
widely available, large-scale computing resources at the problem
seems perfectly reasonable. Motivated by the contest, Unagi recog-
nized this and quickly found creative ways to deploy a sophisticated
parallel search algorithm in the cloud.

While many in the research community in program synthesis
have realized that domain-specific search strategies are likely to
outperform generic SMT-based solutions, few have made the tran-
sition to parallelizing their algorithms and deploying them at cloud
scale. Whereas the state of the art in ED-synthesis scales to around
17 instructions in an hour, Unagi were able to synthesize programs
up to 51 instructions long in just 5 minutes. Given that the search
space is exponential in the size of the program, Unagi were able to
search a vastly larger space in just a small fraction of the time—
besides, they only had 72 hours to do it.

This suggests that mobilizing resources at the scale of the cloud
does not stand to just improve performance by a small multiplica-
tive factor—the improvements in scale can truly be transforma-
tional. Unagi and the other contestants have shown that through
the clouds, only the sky is the limit!

References

[1]1 A. Albarghouthi, S. Gulwani, and Z. Kincaid. Recursive program
synthesis. In CAV, pages 934-950, 2013.

[2] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa.
Syntax-guided synthesis. In FMCAD, 2013.

[3] C.Barrett, M. Deters, L. de Moura, A. Oliveras, and A. Stump. 6 Years
of SMT-COMP. Journal of Automated Reasoning, pages 1-35, 2012.

[4] G. Barthe, J. M. Crespo, S. Gulwani, C. Kunz, and M. Marron. From
relational verification to simd loop synthesis. In PPoPP. ACM, 2013.

[5] D. Beyer. Competition on software verification - (sv-comp). In
TACAS, 2012.

[6] L. de Moura and N. Bjgrner. Z3: An efficient SMT solver. In TACAS,
2008.

[7] B. Dutertre and L. de Moura. The Yices SMT solver. Technical report,
SRI International, 2006.

[8] H. Eldib and C. Wang. An SMT based method for optimizing arith-
metic computations in embedded software code. In FMCAD, 2013.

[9] B. Fischer and J. Schumann. Autobayes: a system for generating
data analysis programs from statistical models. Journal of Functional
Programming, 13:483-508, 5 2003.

[10] P. Godefroid and A. Taly. Automated synthesis of symbolic instruction
encodings from i/o samples. In PLDI. ACM, 2012.

[11] C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A
generic method for automatic software repair. IEEE Trans. Software
Eng., 38(1):54-72, 2012.

[12] C. Green and D. Barstow. On program synthesis knowledge. Artif.
Intell., 10(3):241-279, Nov. 1978.

[13] S. Gulwani. Synthesis from examples: Interaction models and algo-
rithms. 2011 13th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, 0:8—14, 2012.

[14] S. Gulwani, W. R. Harris, and R. Singh. Spreadsheet data manipula-
tion using examples. Commun. ACM, 55(8):97-105, 2012.

[15] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of loop-
free programs. In PLDI. ACM, 2011.

[16] M. Huisman, V. Klebanov, and R. Monahan. On the organisation of
program verification competitions. In Proceedings of the 1st Interna-
tional Workshop on Comparative Empirical Evaluation of Reasoning
Systems (COMPARE), volume 873, 2012.

[17] S. Itzhaky, S. Gulwani, N. Immerman, and M. Sagiv. A simple
inductive synthesis methodology and its applications. In OOPSLA.
ACM, 2010.

[18] M. Jdrvisalo, D. Le Berre, O. Roussel, and L. Simon. The international
SAT solver competitions. AI Magazine, 33(1):89-92, 2012.

[19] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided
component-based program synthesis. In /CSE. ACM, 2010.

[20] E. Kneuss, I. Kuraj, V. Kuncak, and P. Suter. Synthesis modulo
recursive functions. In OOPSLA, pages 407-426, 2013.

[21] A.S.Koksal, Y. Pu, S. Srivastava, R. Bodik, J. Fisher, and N. Piterman.
Synthesis of biological models from mutation experiments. In POPL.
ACM, 2013.

[22] J.R. Koza. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[23] M. Puschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,
J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. Johnson,
and N. Rizzolo. Spiral: Code generation for dsp transforms. Proceed-
ings of the IEEE, 93(2):232-275, Feb 2005.

[24] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat.
Combinatorial sketching for finite programs. In ASPLOS. ACM, 2006.

[25] G. Sutcliffe and C. Suttner. The State of CASC. AI Communications,
19(1):35-48, 2006.

[26] N. Tillmann, J. D. Halleux, T. Xie, S. Gulwani, and J. Bishop. Teach-
ing and learning programming and software engineering via interac-
tive gaming. In SEE, 2013.

[27] A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-Haim, M. M. K.
Martin, and R. Alur. TRANSIT: specifying protocols with concolic
snippets. In PLDI, 2013.

2014/4/28

	Introduction
	Running the contest
	Rules of the game
	The logistics of running the game
	Balancing fairness and fun
	Bonus problems
	Discussion

	Outcomes of the contest and winning strategies
	Offline exhaustive enumeration
	Online heuristic search
	Stitching conditionals
	Parallel deployment of heuristics in the cloud

	Gauging recent work on ED-synthesis
	Conclusions

