The Future of Teaching Programming is on Mobile Devices

Nikolai Tillmann, Michal Moskal,
Jonathan de Halleux, Manuel Fahndrich,
Judith Bishop, Arjmand Samuel
Microsoft Research
One Microsoft Way
Redmond WA, USA
{nikolait,micmo,jhalleux,maf,
jbishop,arjmands}@microsoft.com

ABSTRACT

From paper to computers, the way that we have been writing
down thoughts and performing symbolic computations has
been constantly evolving. Teaching methods closely follow
this trend, leveraging existing technology to make teaching
more effective and preparing students for their later careers
with the available technology. Right now, in 2012, we are in
the middle of another technology shift: instead of using PCs
and laptops, mobile devices are becoming more prevalent
for most everyday computing tasks. In fact, never before in
human history were incredibly powerful and versatile com-
puting devices such as smartphones available and adopted
so broadly. We propose that computer programming, and
thus the teaching of programming, can and should be done
directly on the mobile devices themselves, without the need
for a separate PC or laptop to write code. Programming
on smartphones that we carry around with us at all times
means instant gratification for students, as they can show
their games and applications to their friends, and it means
that students can do their homework or additional practic-
ing at all times. We describe TouchDevelop, a novel mobile
programming environment, and call out challenges that need
to be overcome and opportunities that it creates.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Program editors; D.2.3
[Software Engineering]: Structured programming; D.2.6
[Programming Environments/Construction Tools|:

Integrated environments; D.2.11 [Software Architectures]:

Languages

General Terms

Human Factors, Design, Languages

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ITiCSE’12, July 3-5, 2012, Haifa, Israel.

Copyright 2012 ACM 978-1-4503-1246-2/12/07 ...$10.00.

Tao Xie
Department of Computer Science
North Carolina State University
Raleigh NC, USA

xie@csc.ncsu.edu

Keywords

Evolution, Mobile Devices, Touchscreen, Cloud, Type infer-
ence

1. INTRODUCTION

From scratching in sand, chiseling in stone, writing on pa-
per, using an abacus, mechanical computers, electric com-
puters, mainframes, minicomputers, to eventually micro-
computers/PC, the way that we have been writing down
thoughts and performing symbolic computations has been
constantly evolving. The instruments that are available for
teaching follow the prevalent technologies. Ideally, the way
that a subject is taught should be closely related to how the
students will apply the acquired knowledge later in their
professional careers.

Right now, in 2012, we are in the middle of another tech-
nology shift: more touchscreen-based mobile devices like
smartphones and tablets will be sold than PCs, laptops, and
netbooks combined. In fact, in many cases, incredibly pow-
erful and easy-to-use smartphones are going to be the first
and, in less developed countries, possibly the only comput-
ing devices that virtually all people will own. Many tasks
that used to require a large computer are now feasible on
smaller devices. Even the tiniest smartphones are always
connected to the cloud and have great email reading and
internet surfing capabilities. Improvements in touchscreen
technology and word prediction techniques made it possible
to perform basic typing tasks with ease. Mobile devices are
now often used to play games of a sophistication that would
have required the most advanced PC a decade ago.

While traditional servers, PCs and embedded systems will
stay around and much critical software still needs to be writ-
ten for them, a significant portion of all developed programs
will target mobile devices.

What has not yet happened is the shift to use the new
mobile devices themselves to write applications for those de-
vices. This shift might not seem desirable for affluent pro-
fessional developers who spend the majority of their time
writing code and who can afford a traditional PC develop-
ment environment set up in order to be more productive
with a big screen, full physical keyboard, and mouse. But
note that in general non-essential input devices tend to die;
witness for example the PDA stylus and tablet PC pen, and
the declining popularity of slide-out keyboards for phones. If
it is possible and effective to use only a mobile device with
a touchscreen to program certain applications, then other

more complicated approaches are likely to be eventually re-
placed by the single-device approach, making obsolete the
PC development environment tethered to a mobile device
for testing mobile applications.

Teaching of programming should follow this trend.

Students are soon more likely to personally own a smart-
phone than a traditional PC or laptop. Students will not
only own such devices, they will carry them with them at
all times. They will use them not only for communication,
fun, and utility, but also to store and access their most per-
sonal digital data such as pictures, videos, and music.

This connection opens new opportunities for teaching pro-
gramming. Instead of analyzing and manipulating abstract
or teacher-provided data, students should write and execute
programs on their own mobile devices, working with their
own readily available content, making learning programming
the engaging experience that it should be.

2. DISRUPTION

While some technology shifts happen gradually, they are
often accompanied by fundamental changes. We believe that
the way we input programs and the way we handle program
state will change with the transition to mobile devices, and
there will be consequences for the programming languages as
well. It is important that teachers prepare students for these
imminent changes, which are syntactical and conceptual in
nature.

There are many precedents for the coupling of input de-
vices and programming languages. Consider for example
FORTRAN 77, to name one representative of the punch card
era. Each punch card had 72-column lines; in FORTRAN
77, the first 5 columns were reserved for line numbers, the
6th could indicate a continuation line, and the first column
could indicate a comment. All of these conventions became
cumbersome once programs were not entered directly on
physical punch cards anymore, but instead via a keyboard
and editors with line buffers. We predict that moving away
from a keyboard, a device that allows very precise entry of
around 100 different characters to a touchscreen typical for
mobile devices will again influence how the program syntax
is structured and entered. While forward-looking predic-
tive text input works reasonably well on virtual touchscreen
keyboard, actions that require fine navigation, e.g., to make
structural corrections, are awkward on a touchscreen where
the size of a finger limits precision.

The capabilities of how a computer may handle mem-
ory also influences programming languages. Consider again
FORTRAN 77. It did not allow dynamic memory alloca-
tion and had no way to represent memory references and
had no safe external storage facilities, but only the unsafe
COMMON blocks. Modern programming languages have
greatly improved this situation, providing garbage collected
object references, and routines for structured 1/0O. However,
the modern languages were designed to handle local mem-
ory and storage, and they did not yet make the transition to
cloud-connected devices where the user often perceives state
as not being tied to a particular device, but instead to be
rooted in the cloud, being made available as needed to fill
in for the current task at hand. Besides the general hype
to move storage to the cloud, mobile devices are especially
affected by this trend as they have short replacement cycles,
and they are easily lost or broken. Instead of burdening
the programmer with the implementation of abstractions to

string ::= "Hello world!\n" | ...

number =011 | 3.1415 | ...

local :=x |y |z | foo bar| ...

action ::= frobnicate | go draw line | ...

global ::= phone | math | maps | ok button | chat roster | ...
property ::= vibrate | sin | add pushpin | disable | add | ...
exprs == expr | exprs , expr

parameters = | (exprs)
opi=+|—|/|x|<=|>=[>[<|=][!=]and]|or]]|
expr := local | string | number | true | false

| — expr | not expr | expr op expr
| action parameters | expr —> property parameters
block ::= stmt | block stmt
locals == local | local , locals
stmt ::= expr | locals := expr | do nothing
| if expr then block else block
| while ezpr do block | foreach local in expr do block
| for 0 <= local < expr do block
type ::= Number | String | Song | Nothing | Phone | ...

formals := local : type | local : type , formals

formals-opt ::= | formals

returns-opt = | returns formals

action-def ::= action action (formals-opt) returns-opt block

Figure 1: Abstract syntax of TouchDevelop

move around and merge local and cloud data, or learning
how to use add-on libraries that perform such tasks, cloud-
based state and storage should be an integral aspect of a
new programming language for mobile devices.

3. MOBILE DEVELOPMENT
ENVIRONMENT

TouchDevelop [11] is a novel programming environment,
language and code editor for mobile devices that addresses
some of the main consequences of the expected technology
shift. TouchDevelop makes it possible to write applications
directly on mobile devices, without the need for a separate
PC. At its core is a typed, structured programming language
that is built around the idea of using only a touchscreen as
the input device to author code.

In fact, the abstract syntax, typing rules, and basic se-
mantics of the language are fairly similar to correspond-
ing fragments of mainstream programming languages like
Java or C#. This similarity lets the user transfer expertise
between the TouchDevelop language and a traditional pro-
gramming environment, in both directions. The language
mixes imperative, object-oriented, and functional aspects.
The imperative parts are most visible: assignment state-
ments can update local variables and state of global objects.
The language has a notion of objects in order to facilitate
code autocompletion by the editor — properties of objects
are an easily accessible and intuitive concept. Functional
features come in form of a query language.

A program consist of a set of actions; each action con-
tains statements. Figure 1 gives an overview of the abstract
syntax of statements and expressions that can appear in ac-
tions. The language provides built-in primitives that make
it easy to access the rich sensor data available on a mobile
device.

Instead of a traditional text editor, TouchDevelop employs
a semi-structured code editor. The motivation for structured
editing is not to entirely eliminate the possibility of syntax
errors, but instead to ensure that every navigation task be-

tween different syntax elements can be easily achieved by
tapping on a finger-sized user interface element on the screen
instead of relying on a full physical or on-screen keyboard
that enables editing of code at the level of individual charac-
ters from which words and in turn sentences are formed. To
determine which user interface elements are shown on the
limited screen space, the editor leverages inferred types and
it mines previously written programs to provide highly pre-
dictive auto-completion suggestions to the user. In effect,
the user only has to choose from lists of statement kinds
and expression tokens instead of entering statements and
expressions character by character.

In addition to the basic programming functionality (lan-
guage, interpreter, editor), TouchDevelop provides a social
experience, allowing users to publish and download pro-
grams, discuss them by writing comments, publish screen-
shots, and users can give hearts to a program or comment
when they like it. A central program repository in the cloud
manages all programs and analyzes them for privacy con-
cerns and code duplication.

Figure 2 shows the different views of the code editor in
TouchDevelop, including a listing of a complete program.
Each screenshot captures the entire screen of a smartphone.
Note that all surface areas which act as buttons are large
enough to be tapped on quite precisely by a big finger. The
left screenshot (a) shows a list of statements. The user can
select a statement by tapping somewhere in a statement line.
The middle screenshot (b) shows how the user adds addi-
tional statements by choosing from a list of possible state-
ment kinds. It is not possible to make syntactical mistakes at
the statement level. Once the statement kind is chosen, the
view transitions to the expression editor to edit the expres-
sion associated with the statement. The right screenshot (c)
shows the expression editor, which is implemented similar
to a rich calculator. Individual built-in syntactic primitives
such as numbers and operators can be accessed via nested
keypads, opened by first tapping on the corresponding sum-
mary button. Other semantic procedure and function calls
can be inserted by eight quick buttons, which are populated
based on the type of the current scope, and historical usage
information.

TouchDevelop is available as an free application on the
Windows Phone Marketplace.

4. EXPERIENCE

After six months, more than 3000 games and applica-
tions have been written and published by users of TouchDe-
velop, using the touchscreen as the only input device. The
TouchDevelop website! shows all games and applications.

Many games written by users leverage the accelerometer of
the phone as a controller, measuring how the phone is tilted,
including a fully-featured Tetris-like game, a Breakout-like
game, warehouse games where boxes need to be moved to
particular locations, and many more. Other applications are
useful tools and utilities, including a program that queries
the calendar on the phone and automatically connects to any
currently scheduled online meeting, a program that queries
the current state of parking meters in a city via a web service
and projects the information on a map, a Siri-like application
that connects the microphone, a speech recognition engine,
and a search engine via web service calls, and many more.

 http://touchdevelop.com/

In the following, we report on our ongoing experience
working with students at various levels?.

4.1 9 Weeks with High School Students

The first indication of the feasibility of the approach was
an experience with two high school students who spent 9
weeks over the course of a summer developing games and ap-
plications with an early version of TouchDevelop. The stu-
dents had some previous experience with programming on
PCs for PCs using Java, Python, and/or Scheme, but they
had never written applications for mobile devices before. We
provided them with smartphones that had TouchDevelop
pre-installed, and we encouraged them to be investigative
and learn by themselves how to create games and applica-
tions with the environment. The only instructional material
we provided to the students was a set of sample games and
applications, and a few videos that walk through the process
of creating a new application, tap by tap on the touchscreen.
We would help them later when they had particular ques-
tions about the language, built-in functions, the editor, or
other aspects of the environment.

The students started as learners of the language and en-
vironment, and quickly became relatively experienced pro-
grammers who could write quite sophisticated games and
applications by themselves. One student wrote 19 different
games and applications during this time. Some of the stu-
dents’ games rival existing apps in software marketplaces for
smartphones.

4.2 90 Minutes with 30 High School Students
in a Computer Science Class

We were invited to a high school to work with 30 students
in grades 11-12 in a computer science class for 90 minutes.
The students had recently started the class and were already
introduced to some programming concepts but they had no
experience in developing mobile applications. We provided
12 phones for students to work in groups of three. After
a brief introduction to TouchDevelop, the students had 45
minutes to explore the language and write their own mobile
applications. All groups were able to write applications on
their own, including a program that changes the color of the
screen based on the direction in 3D space that the phone
is facing, a peek-a-boo game that utilized the direction the
phone was facing to display a covered face or an open face
with the audio track to accompany it, and a role playing
game where the user has to answer questions to progress.
The regular computer science teacher made the following
remarks: “FEven though most of the students haven’t learned
about some to the [techniques] before, like using a loop or a
collection of objects, the concepts made sense in the context
of a phone app. [It] was a fun way to learn about program-
ming topics and obtain instant feedback on whether you did
it correctly or not.”

4.3 2 Hours with 90 Eighth Grade Students

We were invited to a middle school to work with the entire
eighth grade of that school — 90 students in two sessions for
2 hours with 45 students. The students did not volunteer
to be part of the sessions. We provided enough phones so
that students could work together in groups of two. After
a brief introduction to TouchDevelop, the students had 60

Zhttp:/ /research.microsoft.com/touchdevelop/teaching.aspx

action wall demo() do
media - Edpictures — at(0)
— post to wall
var term := wall — ask string(
"Search songs") — to lower case
var s ;= "Searching for " Il term
s — post to wall P
for each song in media —'ﬂsongs do ’
if song —=name —to lower case

for ... do ...

foreach album in media - song albums

it album — songs — count > 3 then
album — post to wall

if ... then ..

— contains(term) then .
song — post to wall s SR LU
else if ... then ... else ...
condiuonal statement
while ... do ...

foreach ... do ...

or a collection of elements

if alboum|—songs — count
> 3 then

the current element in foreach loop. Use [edit] button below to
rename

€« > s &
1234 4 -%/ woma
456 . << o> memse "abc"
7890 = £ () =

postto thumbnai

art has art
wall |

duration genre artist

B

()

Figure 2: Three screenshots illustrating the TouchDevelop programming environment on mobile devices.

minutes to explore the language and write their own mobile
applications.

71 students filled out questionnaires before and after the
class.

Before the class,

e 12% of the students stated that they already had pro-
gramming knowledge, 43% some and 43% no program-
ming knowledge at all

e 61% of the students did not own a smartphone
After the class,

e 7% of the students stated that they thought the de-
velopment of a mobile application with TouchDevelop
was easy, 48% thought it was somewhat difficult, and
45% said it was difficult. However,

e 86% of the students wanted to create more applications
using TouchDevelop.

e 92% of the girls wanted to continue writing applica-
tions whereas only 38% of them had an idea of what
applications they could create prior to the class.

Almost all groups were able to create a unique applica-
tion®, incorporating the phone input sensors (accelerometer,
camera, touchscreen, microphone) outputs (vibrator, screen,
audio) and/or media libraries (songs, pictures).

3http://research.microsoft.com/apps/video/?id=157112

5. OPPORTUNITIES AND CHALLENGES
FOR TEACHING AND LEARNING

We next discuss opportunities and challenges of teaching
and learning in the context of TouchDevelop, and writing
programs on mobile devices in general. The discussion is
based on feedback from users and students.

5.1 Platform and Environment Support

Today’s classrooms are not well equipped for the transi-
tion yet. The widespread expectation is that exercises are
performed on traditional PCs and laptops. Such an expecta-
tion is reflected in the equipment made available for the stu-
dents for the duration of a course. While some students may
already own personal mobile devices, it is likely that with
increasing adoption of various smartphone platforms we will
find a heterogeneous set of incompatible phone platforms
supporting vastly different programming environments that
are rapidly evolving.

Mobile programming environments will have to be stan-
dardized or made available across platforms, or all students
of a class must adopt a particular phone platform, or schools
must make available a homogeneous set of mobile devices
for teaching purposes, similar to how many schools already
make available PCs or laptops.

In a classroom setting, a teacher would have to be able to
project a programming session on a mobile device on a big-
ger screen. Some mobile devices have video-out capabilities,
similar to laptops, or a teacher would need a WolfVision-like
desktop visualizer* to capture and project the phone’s screen
on a larger display for students to see. Another alternative
for the teacher would be to use an emulator or simulator of

“http://wolfvision.com/

the mobile device that runs on the teacher’s laptop or PC.
Finally, the programming environment itself could support
a mechanism to stream its current image.

5.2 Teaching and Learning Materials

Teachers are not yet well prepared for the transition. Ex-
isting course material is tailored around programming lan-
guages that were not designed for mobile devices. Much of
the existing material should be easy to adapt, as the fun-
damental algorithmic aspects of programming still apply.
The necessary changes are foremost adaptations to language
syntax and editors, with new aspects of programming with
cloud state added later on.

Over time, examples and exercises could be adapted to be
better suited for the nature of personal mobile devices, e.g.,
by letting algorithms iterate over the songs available on the
actual phone instead of enumerating over fictitious payroll
data.

We are in the process of creating course material for an
introductory course on programming with TouchDevelop. A
book® and slide decks® are already available.

5.3 Software Development Processes
and Practices

There are many established development processes and
practices for software development with traditional program-
ming languages on PCs and laptops. Not all of them carry
over seamlessly to an emerging mobile programming envi-
ronment. Next we discuss some constraints imposed by the
new programming environments and their impact on the de-
velopment processes and practices.

Some processes (e.g., test-driven development) that re-
quire specific practices (e.g., testing) and supporting tools
(e.g., formal unit testing frameworks and test runners) may
not work well in the new programming environments at first,
as the environment will not have the fully developed ecosys-
tems that we have become accustomed to from established
programming environments. This situation is likely tempo-
rary as the ecosystem is developing.

Some software development and teaching practices such
as pair programming and remote assistance could be infea-
sible without specific platform support, e.g., live sharing of
screens across phones. Even when the platform support is
provided, the exact same code-editing screen without edit-
ing context may not be desirable for the observing program-
mer, and the platform support may need to show a different
screen with more editing context for the observer.

6. DISCUSSION AND RELATED WORK

The idea of using mobile devices instead of PCs in edu-
cation is not new [9]; what is new in TouchDevelop is that
the mobile device is not just used as a browser-like device
to access existing information and programs, but that it is
used as a program creation environment itself.

Learning programming is difficult [4], as it amounts to
acquiring a skill, and not just a body of knowledge. Work-
ing with mobile devices such as personal smartphones may
make learning programming more interesting to students.
The traditional mobile application development model cen-
tered around developing on a PC adds many complexities for

Shttp://touchdevelop.com/book
Shttp://touchdevelop.com/slides

teaching [3]. Nevertheless, teaching an introductory course
on programming by writing code for mobile devices has been
tried [8, 6, 7]; one finding was that developing mobile ap-
plications (by using a PC) was more difficult than develop-
ing desktop applications (on a PC), since the mobile pro-
gramming models are typically a restricted subset of the PC
model, to the extent that programming for mobile devices
on PCs can be seen as a form of programming embedded
systems. In contrast, TouchDevelop does not require a PC
at all, offering a homogeneous development experience.

At many universities, advanced programming courses for
mobile devices are becoming available. Workshops are held
to make teachers familiar with mobile programming environ-
ments. An example is the Audacious Android Application
Programming Workshop”.

It has been observed that developing games for mobile
devices can be a valuable tool in the CS curriculum [5], as the
students can directly relate to mobile games, and because
such games offer instant gratification — students can play
them on the mobile devices that they carry with them at all
times, and they can show them to their friends. However,
it was also observed that it is difficult to develop mobile
applications in the traditional development setting, and thus
it is a topic that is usually delayed to advanced CS classes.

Attempts have been made to greatly simplify the pro-
gramming model for mobile applications. For example, App
Inventor [14] is a system that enables the visual develop-
ment of Android apps by connecting blocks to define the
program’s behavior. This system is promising for use in in-
troductory programming courses [13, 12]. However, even if
simplifying application development, the development sys-
tem is still designed around the idea of developing programs
on a fully featured PC with a big screen and precise mouse.
Our experience with high school students shows that a pro-
gramming environment that runs directly on mobile devices
has the potential to dramatically reduce the technical learn-
ing overhead; high school students whom we worked with
were able to create and refine their first programs within an
hour, immediately leveraging the sensors and data available
on the phone, instead of having to learn concepts such as
cross-compilation and application deployment first.

It has been observed that the rich sensory data available
on mobile devices stimulates the use of mobile devices as
learning tools [1]. However, the PC itself does not offer
many of the sensors such as location and accelerometer that
are often used in mobile games and applications, making it
awkward to develop and test initial versions of mobile ap-
plications in a PC-based emulator; in contrast, development
directly on mobile devices makes the use of such sensors
easier since immediate feedback is provided.

By carrying their own mobile devices with them at all
times, students will effectively carry around the entire com-
puter programming learning and practicing environment, as-
suming that the programming environment runs on the de-
vice itself. The effect is an unprecedented form of mobile-
device supported lifelong learning and practicing [10]. If
eventually every student will own a mobile device, then this
environment enables a new phase of technology-enhanced
learning of programming, termed “seamless learning” [2].
This mode of learning allows students not only to learn
something whenever they are curious, but also to seamlessly

"http://www.harding.edu/fmccown /android /workshop.html

switch from one activity to another supported by their mo-
bile devices.

One might argue that the smaller form factor and lim-
ited input capabilities of mobile devices make them inher-
ently restrictive, and unsuitable for certain tasks, possibly
including programming. What seems clear is that estab-
lished patterns will have to change to make programming
on such devices feasible. There are several programming en-
vironments already on software marketplaces for mobile de-
vices; most are difficult to use, as they simply port existing
text-editor based programming languages, but some radi-
cally adapt to the new touchscreen-based mobile paradigm,
such as TouchDevelop.

Besides the small screen, the limited battery life and pro-
cessors that are not as fast as those found in desktop PCs
may limit the applications that run on mobile devices. How-
ever, with the omnipresent cloud, it is feasible to defer rich
functionalities to remote services. Over time, more and more
such services are becoming available, see for example Project
Hawaii® which offers services for OCR, Speech to Text, and
message relay. TouchDevelop makes it easy to perform such
service calls, thus greatly extending the environment from
the immediate sensors on the device to anything accessible
via the cloud. The cloud also enables a new paradigm for
data storage: the concept of distributed state will be di-
rectly incorporated into the semantics of the TouchDevelop
programming language; the runtime system will take care
of synchronizing and merging data between different mo-
bile clients and the cloud, providing an abstraction at the
language-level to the programmer.

The current trend to mobile devices and touchscreens may
simply be a transient phenomenon, and we might soon see
yet another technology emerge that will make small touch-
screen considerations again obsolete. But such a develop-
ment is not certain either.

7. CONCLUSION

In the foreseeable future, incredibly powerful and easy-to-
use smartphones will be the first (and possibly only) com-
puting devices that virtually all people will own, and carry
with them at all times. We predict that those devices will
be used as application creation environments, and propose
that the teaching of programming should start from this new
reality. We presented our experience with middle and high
school students that indicates that programming directly on
mobile devices is indeed quite accessible to students who
are beginning to learn programming. By learning program-
ming on their own personal devices, with access to personal
content such as pictures, videos, songs, and sensors such as
location and accelerometer, this new way of teaching pro-
gramming will create a uniquely engaging and fun learning
experience for students.

8. REFERENCES

[1] J. Barbosa, R. Hahn, D. N. F. Barbosa, and C. F. R.
Geyer. Mobile and ubiquitous computing in an
innovative undergraduate course. In Proceedings of the
88th SIGCSE technical symposium on Computer
science education, SIGCSE ’07, pages 379-383, New
York, NY, USA, 2007. ACM.

8http://research.microsoft.com/hawaii/

[2] T.-W. Chan, J. Roschelle, S. Hsi, Kinshuk,

M. Sharples, T. Brown, C. Patton, J. C. Cherniavsky,
R. D. Pea, C. Norris, E. Soloway, N. Balacheff,

M. Scardamalia, P. Dillenbourg, C.-K. Looi,

M. Milrad, and H. U. Hoppe. One-to-one
technology-enhanced learning: an opportunity for
global research collaboration. Research and Practice in
Technology Enhanced Learning, 1(1):3-29, 2006.

[3] M. H. Goadrich and M. P. Rogers. Smart smartphone
development: ios versus android. In Proceedings of the
42nd ACM technical symposium on Computer science
education, SIGCSE 11, pages 607612, New York,
NY, USA, 2011. ACM.

[4] T. Jenkins. On the difficulty of learning to program.
Language, 4:53-58, 2002.

[5] S. Kurkovsky. Engaging students through mobile game
development. In Proceedings of the 40th ACM technical
symposium on Computer science education, SIGCSE
’09, pages 44-48, New York, NY, USA, 2009. ACM.

[6] Q. Mahmoud and P. Popowicz. A mobile application
development approach to teaching introductory
programming. In Frontiers in Education Conference
(FIE), 2010 IEEE, pages T4F-1 ~T4F-6, oct. 2010.

[7] Q. H. Mahmoud. Best practices in teaching mobile
application development. In Proceedings of the 16th
annual joint conference on Innovation and technology
in computer science education, ITICSE 11, pages
333-333, New York, NY, USA, 2011. ACM.

[8] Q. H. Mahmoud and A. Dyer. Mobile devices in an
introductory programming course. Computer,
41:108-107, June 2008.

[9] M. Pasamontes, J. Guzman, F. Rodriguez,

M. Berenguel, and S. Dormido. Easy mobile device
programming for educational purposes. In Decision
and Control, 2005 and 2005 European Control
Conference. CDC-ECC 05. 44th IEEE Conference on,
pages 3420 — 3425, dec. 2005.

[10] M. Sharples. The design of personal mobile
technologies for lifelong learning. Comput. Educ.,
34:177-193, April 2000.

[11] N. Tillmann, M. Moskal, J. de Halleux, and
M. Fahndrich. Touchdevelop: programming
cloud-connected mobile devices via touchscreen. In
Proceedings of the 10th SIGPLAN symposium on New
ideas, new paradigms, and reflections on programming
and software, ONWARD ’11, pages 49—60, New York,
NY, USA, 2011. ACM.

[12] S. Uludag, M. Karakus, and S. W. Turner.
Implementing it0/cs0 with scratch, app inventor for
android, and lego mindstorms. In Proceedings of the
2011 conference on Information technology education,
SIGITE ’11, pages 183-190, New York, NY, USA,
2011. ACM.

[13] D. Wolber. App inventor and real-world motivation.
In Proceedings of the 42nd ACM technical symposium
on Computer science education, SIGCSE ’11, pages
601-606, New York, NY, USA, 2011. ACM.

[14] D. Wolber, H. Abelson, E. Spertus, and L. Looney.
App Inventor - Create Your Own Android Apps.
O’Reilly, 2011.

