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Abstract. We devised a reachability analysis that exploits code an-
notations and implemented it as a component of the extended static
checker ESC/Java2. The component reports unchecked code and a class
of errors previously undetected. We applied the analysis to existing an-
notated code and uncovered errors that were unknown to the developers.
We present the algorithm performing the analysis and discuss errors that
it detects.

1 Introduction

Program annotations are logic specifications embedded in the actual program
code [B]. They help programmers to implement the intended functionality. Vari-
ants of weakest precondition or strongest postcondition calculi are used to stat-
ically determine whether a program code conforms to its annotations. The ex-
tended static checker ESC/Java2 [6] is a tool that attempts to verify annotated
Java programs following this approach.

Writing specifications, however, is a difficult task, and empirical evidence
shows that automated sanity checking of annotations is desirable for successful
application of the approach [I]. We focus here on a particular sanity check: code
reachability. Code is unreachable if it is not executed for any possible input;
unreachable code is often a bug. In Java, certain cases of unreachable code,
such as commands following a return statement, are disallowed by the compiler.
Traditionally, unreachable code is detected by data flow analysis [g].

In the presence of annotations, the notion of code unreachability needs to be
extended as the annotations restrict the possible input. Consider the examples
in the Fig. [l Both examples contain code that causes a runtime exception when
executed and we would like the static analysis to warn the user about it. In
both cases, however, ESC/Java2 does not warn about the problem. In the first
example, it is because of the discrepancy between the method’s precondition and
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//@ requires x > 10; static int loopUnrolling () {
static int withPre(int x) { int i =0;
if (x < 10) { while (i < 10) i++;
return 1/0; // not checked return 1/0; // not checked
} }
return 1,
}

Fig. 1. Examples of problems addressed by the analysis.

the condition of the if statement. In the second example, it is not obvious why
the checker should miss the error. By default, ESC/Java2 does not reason about
any code following such loop, which is due to the imprecise modeling of the code
(see Sect. [4.1| for details).

In both cases our analysis reports a warning, identifying the commands that
are not checked.

The contributions of the article are: (1) we introduce the notion unreach-
ability for annotated code, (2) we identify several types of unreachable code
categorized by their root cause, (3) we present an efficient algorithm for detect-
ing unreachable code, (4) we present an evaluation of the analysis on an existing
code base, and (5) an implementation, which is part of ESC/Java2, available
onlin

2 Background

The Java Modeling Language [7] (JML) is an annotation language for Java pro-
grams embedded in program code as a special form of comments. ESC/Java2 is
an extended static checker for JML-annotated Java code that attempts to verify
that a given program conforms to its annotations. For a given program, ESC/-
Java2 generates a formula, called verification condition (VC), using a strongest
postcondition calculus. The checker tries to prove the verification condition by
querying an automated theorem prover. If the VC is not proven valid, warnings
are provided to the user. These warnings describe in what way the specified
program might cause run-time exceptions (such as null-pointer dereferencing) or
how the program may violate its JML specification.

The checker translates JML-annotated Java code to a VC in several stages.
One these stages uses an intermediate representation called dynamic single as-
signment (DSA). A DSA program is used to express the semantics of both the
Java code and the JML specification. In DSA, each variable is assigned-to at
most once, which enables replacing assignments by assumptions (see [4] for de-
tails).

3 http://kindsoftware.com/products/opensource/ESCJava2/cvs.html


http://kindsoftware.com/products/opensource/ESCJava2/cvs.html

Reachability Analysis for Annotated Code 3

C N(P,C) W(P,C)
skip P false
assume f f AP false
assert f fAP PAAf

CilICs " N(P,C1) vV N(P,Cs) W(P,C1) V W(P,Cs)
Cy;Co N(N(l‘j7 Cl),CQ) W(P, 01) \/VV(N(P)7 01)702)

Fig. 2. Strongest postcondition transformers.

In the rest of the paper we will assume a first-order logic language for formulas
and a theory T for the context of validity, we will write T |= f to denote that f
is valid in the context of the theory T'. The theory T expresses the background
predicate, an axiomatization of the execution semantics of Java programs.

We use e and f to denote logic formulas, possibly with free variables. In
the following, by DSA we will understand the language defined by the following
grammar:

cmd := skip | assume f | assert f | cmd||cmd | emd; emd

Additionally, we will use the following shorthands:

if C' then B; else By = ((assume C; By)||(assume —C; By))
if C then B = if C then B else skip

Informally, the purpose of the assume f command is that once the execution
reaches this command f can be assumed; if the execution trace reaches this
command and f does not hold, that execution trace blocks. The purpose of the
assert f command is that once the execution reaches this command f must be
checked; if it is invalid then an error occurs. The command C7||Cs represents
nondeterministic choice between the two commands and the command C7;Co
represents a sequence.

To formally define the semantics of DSA, we introduce ton| strongest post-
condition predicate transformers N and W, where N propagates the normal be-
havior and W the wrong behavior, whose semantics are captured by the following
definition.

Definition 1 1. For predicate transformers N and W defined as in Fig.[3 and
for a precondition P and a command C, we say that C terminates normally
for P if and only if the predicate N(P,C) holds and it terminates wrongly
for P (or goes wrong for P) if and only if W(P,C) holds.

2. The verification condition for a program C is = W(true, C).

Therefore the verification condition expresses that the program does not go
wrong for any possible input.

4 The implementation additionally contains a third predicate for ezceptional behavior.
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An important property of this calculus is that a command with an unsatisfi-
able precondition does not go wrong. If a precondition is unsatisfiable, an anal-
ysis relying on a strongest postcondition calculus does not provide any useful
information to the user. Moreover, such a scenario is most likely unintentional.

Observation 2 If T = —P then T = —-W(P,C), for all formulas P and all
commands C'.

3 Definition of Unreachability

Informally, a command is unreachable if none of the execution traces leading to
it have satisfiable normal behavior. An unreachable assertion is never checked.

To express this idea formally, this section defines the notion of unreachability
in the context of the normal behavior predicate transformer N and an acyclic
control flow graph. Let C be a set of commands.

Definition 3 A control-flow graph is a tuple (V, E, 1,0, L), where V is the set
of nodes, E C V xV is the set of edges, I C V the set of entry nodes and
O CV is the set of exit nodes. Nodes are mapped to commands by L:V — C.
Additionally, we require that entry nodes do not have parents, exit nodes do not
have children, the graph is acyclic, and the set of nodes is finite.

Definition 4 For a control flow graph G = (V,E,I,0, L), we define parents
and precondition of a node:

parentsg(n) = {p € Ve (p, n) € E}

true ifnel
N(preq(p), L(p)) otherwise

preg(n) = {

Definition 5 Node n is semantically unreachable in a control flow graph G if
and only if T |E -~ preq(n).

Whenever we use the term ‘unreachable’ (and ‘reachable’) we refer to seman-
tic unreachability as defined above, not to the graph-theoretic notion.

The DSA maps to a subclass of control-flow graphs, called serial parallel
graphs.

\/peparentsc (n)

1. if C is one of skip, assumef or assert f, then it maps to ({n}, {}, {n}, {n},
[n — C]), where n is a fresh node

2. if C7 maps to (V1, E1, 11,01, L1) and Cy maps to (Va, Ea, I3, Oz, L5) then
(a) C7; Cy maps to <V1 UVs, F1UEU (01 X [2),]1,02,£1 U E2>
(b) and ClHCQ maps to <V1 UVa, By UFEy, 11 Uly,O1 UOs, L1 U £2>

To see how the DSA calculus defined in the Sect. [2] relates to semantic un-
reachability, consider a DSA command C, a graph G obtained from it, and a
node n of G. Let C’' be a command obtained by replacing the sub-command
corresponding to n with assert false and all sub-commands assert f of C' with
assumef. A node n is semantically unreachable in G if and only if T = =W (true, C").
This captures the intuitive meaning of an unchecked assertion.
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4 Scenarios of Unreachable Code

4.1 Loop Unrolling

Loops are one of the toughest nuts to crack when reasoning about programs.
In extended static checking, to be able to reason about programs that do not
contain loop invariants we use a technique called loop unrolling. This technique
is parameterized by a constant L and reasons only about the scenarios when a
given loop terminates in 0, 1, ..., L iterations. By following this approach we can
miss some errors.

The following schematically describes the result of an unrolling with L = 2:

while (C) { if C then B;
B = if C then B;
} if C then assume false

Execution traces that do not terminate in L iterations are modeled as block-
ing in the loop by the assume false command.

Loop unrolling contains a significant pitfall. If for all possible inputs the
analyzed loop does not terminate within L iterations, the checker does not reason
about the code following the loop.

Consider the following translation of a Java code to its DSA representation:

Cy: if 0 < 10 then assumei; = 0+ 1;
int i =0; Cy @ ifi; < 10 then assumeis = i1 + 1;
whil‘_e (i < 10) = (3: if iy < 10 then assume false;
returl:i_/;o- Cy : assert (0 # 0;
; C5: assumeRES =1/0

If we compute the normal behavior of the first three commands, we observe that
T E —N(C1; Cy; Cs, true). From Lemma T E ~-W(N(Cy; Cy; Cs, true), Cy; Cs).
Therefore, the assertion C5 cannot cause the program to go wrong since from
the point of the checker that assertion is unreachable.

The analysis presented in this article detects that the code following the loop
is not checked, hence, once the user is informed about it, he or she can adjust
the appropriate parameter of the checker to unroll the problematic loop more
times.

4.2 Mistakes of the User

The previous section discussed code unreachable due to the inaccurate modeling
of Java by the checker. Unreachable code, however, can also directly stem from
inconsistencies in user’s code and specifications.

We present four kinds of unreachable code in the Fig. [3] The unreachableCode
method contains unreachable code in the classic sense: the division by zero is not
checked. It is most likely a bug in the user code. More subtle problems arise when
we take into account annotations as well, as in the withPre method, from Fig.
An extreme example of an inconsistency in specifications is the method badSpec
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int unreachableCode(int x) { //@ requires x > 0;

if (x > 10) //@ requires x < 0;
if (x <5) int badSpec(int x, int y) {
return 1/0; return 1/0;
return 0; }
}
//@ modifies a, b; //@ requires i >= 10;
void modAB() { ... } //@ ensures \result == i;
//@ ensures \result < 10;
//@ modifies a; void libraryFunc (int i);
int modA() {
modAB(); void useLibraryFunc() {
return 1/0; libraryFunc (11);
} int x = 1/0;
}

Fig. 3. Examples of different types of unreachable code.

which has unsatisfiable precondition. Such methods always pass the analysis by
the checker.

A common case of unreachable code is related to the modifies clause. Con-
sider the methods modA, which promises to modify only a, and modAB, which can
also modify b. Therefore, modAB should not be called from modA. This causes
the method modA to go wrong and therefore ESC/Java2 warns about it. Often,
however, this causes the rest of the assertions to be unreachable. This scenario
is a specific instance of a general issue where an unsatisfiable asserted expression
generates one warning and hides other warnings.

Another common source of inconsistencies are specifications of methods for
whom the implementation is not available. This is illustrated by the methods
libraryFunc and useLibraryFunc in Figure [3 As ESC/Java2 checks the code with
respect to the specification and there is no code for the method libraryFunc, the
checker does not detect that its postcondition is unsatisfiable. Once a method
with unsatisfiable postcondition is used in code, everything following that method
is not checked. The explanation for this behavior is that a call to a method is
translated into an assertion checking the method’s preconditions and an assump-
tion establishing the method’s postcondition. See [I] for a detailed discussion on
such specifications.

5 The Algorithm

We are given a directed acyclic flow graph in which we want to detect semanti-
cally unreachable nodes. An efficient algorithm is needed to make the analysis
usable in practice. For that we need to (1) compute small prover queries, and
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(2) call the prover only a few times. Experimental data shows that the response
time of the automated theorem prover (Simplify) sharply increases when the size
of the query exceeds a certain limit; this motivates (1). A prover call is on aver-
age hundreds times slower than any reasonable manipulation of the flow graph;
this motivates (2).

The precondition definition directly maps to a recursive (memoized) algo-
rithm that creates a directed acyclic graph (DAG) with n— 1 nodes for V and m
nodes for A, where n is the number of nodes and m is the number of edges in
the flow graph. Unfolding naively the DAG into a tree to send it to a prover
can yield queries with exponential size. A simple way to obtain preconditions
that produce queries with linear size is to introduce an auxiliary variable for
each precondition, and then use it to express subsequent preconditions. But in-
troducing auxiliaries comes at a cost. We can minimize the size of the formula
by introducing auxiliaries only for subformulas of size S when they appear in P
places and PS — P — S > 2. This transformation reduces the size of the queries
dramatically: On our benchmarks it reduced by 90% the number of queries that
are too big for the prover to process. Eliminating sharing exploits the series—
parallel structure of the flow graph and the queries are roughly the same size as
the normal behavior computed directly on the DSA as in [4].

The auxiliary variables can be defined using equivalence.

(a & £(b) Agla,b) (1)

Here b is a set of variables, a is the auxiliary variable, f(b) is its definition,
and g(f(b),b) is the original formula. Now consider the alternative:

(@ = f(b)) Ag(a,b) (2)

It can be shown that is satisfiable if and only if is satisfiable, provided
that ¢ is monotonic in a, that is g(false,b) = g(true,b). We can make sure
that that is the case by eliminating sharing only below the operators A and V.
In practice, replacing by reduces the proving time to two thirds.

We say that the nodes of the flow graph that can be tracked back to Java
code are interesting. There are very few of them, less than 20 in most cases.
Processing them takes negligible time, which is why later we shall concentrate
on minimizing the number of prover queries. We contract the graph by keeping
only the interesting nodes; we have an edge (u,v) in the contracted graph if in
the original one there was a path from u to v with no other interesting node. This
can be done in O(mn) time with a slight modification of a DFS-based solution
to the transitive closure problem. The contracted graph has a unique inital node
denoted by 1.

The key observation that allows us to have fewer prover calls than interesting
nodes is that the information about node reachability can be propagated in the
flow graph according to these rules: (1) we can infer that « is unreachable if all
paths from 4 to u contain an unreachable node, and (2) we can infer that u is
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reachable if it dominates a reachable node v, that is, if all paths from i to v
that do not contain unreachable nodes go through u. These rules are expressed
in terms of paths, implying that we can use the propagation algorithm (Fig.
on the original graph as well as on the contracted graph.

PROPAGATE-UNREACHABLE (u)
label u as unreachable

for each child v of u such that v has only unreachable parents
do PROPAGATE-UNREACHABLE(v)

PROPAGATE-REACHABLE(u)

label u as reachable
if u has an immediate dominator d call PROPAGATE-REACHABLE(d)

Fig. 4. Propagation of the reachability information.

We compute dominators ignoring nodes already marked as unreachable using
the simple algorithm of Cooper [2], which works in O(mn) time for DAGs. The
critical part that makes our implementation fast in practice is the heuristic used
to decide for which node we query the prover.

REACHABILITY-ANALYSIS()

while there are unlabeled nodes
do choose an unlabeled node u that has
a maximal number of unlabeled dominators
if the prover says that the precondition of u is reachable
then PROPAGATE-REACHABLE(u)
else use binary search with prover queries to identify
the farthest unreachable dominator d of u
PROPAGATE-UNREACHABLE(d)
RECOMPUTE-DOMINATORS
if d has an immediate dominator d’
then PROPAGATE-REACHABLE(d')

Fig. 5. The algorithm used to implement the analysis.

In the case that all nodes are reachable and interesting the greedy algorithm
(Fig. [)) is optimal, because the prover must be called for all the leafs of the
(immediate) dominator tree. In practice the performance is good: The time nec-
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essary to verify one package of the ESC/Java2 frontend on a computer with
3GHz Pentium CPU is 934 seconds, out of which 47% is spent in the reacha-
bility analysis, out of which 99.5% is spent in the prover. Therefore ESC/Java2
does not become significantly slower because of the reachability analysis. The
total number of leafs in the dominator trees is 179 and the number of prover
calls is 191. The number of methods was 111. The average number of nodes in
the flow graph is 270 and in the contracted flow graph it is 6.

6 Case Study

We have tested the analysis on the ESC/Java2 frontend, the javafe package.
The package contains 217 classes.

We have found 5 inconsistencies in the specifications of the JDK, which
are not reported without the reachability analysis. The ESC/Java2 repository
contains handcrafted tests to detect this type of problems. These tests, however,
did not uncover these problems because they were not exhaustive. It should be
noted that fixing these problems involved a tedious process of narrowing down
the set of inconsistent annotations. This effort, however, was justified by the
wide usage of these specifications.

An incorrect use of the modifies clause (as in Fig. [3) hiding the rest of the
potential warnings appeared 9 times. Other warning hiding appeared 7 times.
The case of unreachable code resulting from loop unrolling, as discussed in the
Sect. appeared 4 times. In 10 cases the informal comments indicated that the
author was aware that the code is unreachable. Code of this type can be marked
with the unreachable pragma and then the analysis does not warn about it.
We detected only one case of unreachable code in the classical sense.

In several cases the unreachable was due to the unsound modeling of the
modifies \everything; pragma. This pragma is the default annotation if no
modifies clause is provided. Whenever a method with the modifies \everything;
annotation is called, ESC/Java2 does not consider the potential state change.
Therefore, the code that we have found is actually executed. Nevertheless, ES-
C/Java2 does not check that code, thus the warnings provided by the analysis
were not spurious.

In the remaining 12 cases we were not able precisely identify the source
of the problem. Nevertheless, we suspect that the source lies in inconsistent
specifications of classes inside the javafe package. Such inconsistencies are very
hard to pinpoint as they involve object invariants in a class hierarchy.

7 Conclusion and Future Work

We devised the theoretical underpinnings of reachability analysis for annotated
code, implemented it efficiently, and classified the bugs that it helps to find.
We intend to adapt it for BoogiePL [3], whose flow graphs are not necessarily
series—parallel.

We pose two open problems related to this analysis.
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Provide better warnings. As the case study shows, although our analysis un-
covers real bugs, they are often hard to track down. The warning message should
also pinpoint the likely locations causing code to be unreachable, not only to the
location of the unreachable code. Even better, the warning should also classify
the problem, for example by saying that it is a ‘loop unrolling’ problem if that
is the case.

Optimize VCs and prover queries. The reachability analysis suggests that
one VC per method might not be optimal, for example because it includes all
the unreachable code. In general, what is an optimal strategy for querying the
prover for the correctness of a method, given its flow graph?
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